Abstract

An interferometric technique was used to investigate the relative phase delay between polarization modes in birefringent single-mode fibers. Polarization-mode dispersion is directly deduced from the measurements of relative phase delay at different wavelengths. Relative group delays of 20 fsec can be measured in meter-length samples without the need for light-polarizing devices.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminov, IEEE J. Quantum Electron. QE-17, 15 (1984).
  2. S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
    [CrossRef]
  3. M. Monerie, P. Lamouler, Electron. Lett. 18, 998 (1982).
  4. K. Mochizuki, Y. Namihira, H. Wakabayashi, Electron. Lett. 17, 153 (1981).
    [CrossRef]
  5. N. Shibata, M. Tsubokawa, S. Seikai, Opt. Lett. 10, 92 (1985).
    [CrossRef] [PubMed]
  6. J. P. Von der Weid, L. Thévenaz, J. P. Pellaux, Electron. Lett. 23, 151 (1987).
    [CrossRef]
  7. L. Thévenaz, J. P. Pellaux, J. P. Von der Weid, IEEE J. Lightwave Technol. (in press).
  8. S. C. Rashleigh, Opt. Lett. 8, 336 (1983).
    [CrossRef] [PubMed]

1987 (1)

J. P. Von der Weid, L. Thévenaz, J. P. Pellaux, Electron. Lett. 23, 151 (1987).
[CrossRef]

1985 (1)

1984 (1)

I. P. Kaminov, IEEE J. Quantum Electron. QE-17, 15 (1984).

1983 (2)

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

S. C. Rashleigh, Opt. Lett. 8, 336 (1983).
[CrossRef] [PubMed]

1982 (1)

M. Monerie, P. Lamouler, Electron. Lett. 18, 998 (1982).

1981 (1)

K. Mochizuki, Y. Namihira, H. Wakabayashi, Electron. Lett. 17, 153 (1981).
[CrossRef]

Kaminov, I. P.

I. P. Kaminov, IEEE J. Quantum Electron. QE-17, 15 (1984).

Lamouler, P.

M. Monerie, P. Lamouler, Electron. Lett. 18, 998 (1982).

Mochizuki, K.

K. Mochizuki, Y. Namihira, H. Wakabayashi, Electron. Lett. 17, 153 (1981).
[CrossRef]

Monerie, M.

M. Monerie, P. Lamouler, Electron. Lett. 18, 998 (1982).

Namihira, Y.

K. Mochizuki, Y. Namihira, H. Wakabayashi, Electron. Lett. 17, 153 (1981).
[CrossRef]

Pellaux, J. P.

J. P. Von der Weid, L. Thévenaz, J. P. Pellaux, Electron. Lett. 23, 151 (1987).
[CrossRef]

L. Thévenaz, J. P. Pellaux, J. P. Von der Weid, IEEE J. Lightwave Technol. (in press).

Rashleigh, S. C.

S. C. Rashleigh, Opt. Lett. 8, 336 (1983).
[CrossRef] [PubMed]

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Seikai, S.

Shibata, N.

Thévenaz, L.

J. P. Von der Weid, L. Thévenaz, J. P. Pellaux, Electron. Lett. 23, 151 (1987).
[CrossRef]

L. Thévenaz, J. P. Pellaux, J. P. Von der Weid, IEEE J. Lightwave Technol. (in press).

Tsubokawa, M.

Von der Weid, J. P.

J. P. Von der Weid, L. Thévenaz, J. P. Pellaux, Electron. Lett. 23, 151 (1987).
[CrossRef]

L. Thévenaz, J. P. Pellaux, J. P. Von der Weid, IEEE J. Lightwave Technol. (in press).

Wakabayashi, H.

K. Mochizuki, Y. Namihira, H. Wakabayashi, Electron. Lett. 17, 153 (1981).
[CrossRef]

Electron. Lett. (3)

M. Monerie, P. Lamouler, Electron. Lett. 18, 998 (1982).

K. Mochizuki, Y. Namihira, H. Wakabayashi, Electron. Lett. 17, 153 (1981).
[CrossRef]

J. P. Von der Weid, L. Thévenaz, J. P. Pellaux, Electron. Lett. 23, 151 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (1)

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. P. Kaminov, IEEE J. Quantum Electron. QE-17, 15 (1984).

Opt. Lett. (2)

Other (1)

L. Thévenaz, J. P. Pellaux, J. P. Von der Weid, IEEE J. Lightwave Technol. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Amplitude of interference signal for different phase delays between polarization modes. Dashed lines are the best functions fitting the experimental curves following Eq. (3).

Fig. 2
Fig. 2

Phase delay versus wave number and fitted PMD.

Tables (1)

Tables Icon

Table 1 Characteristics and Polarization-Mode Dispersion Measurements of Fibers with Geometrical or Stress-Induced Anisotropies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f ( l 0 ) = exp [ i ( β l β 0 l 0 ) ] d ω | F ( ω ω ) | 2 × exp [ i ( τ l τ 0 l 0 ) ( ω ω ) ] ,
f B ( l 0 ) = A 1 ( l 0 ) exp [ i ( β 1 l β 0 l 0 ) ] + A 2 ( l 0 ) × exp [ i ( β 2 l β 0 l 0 ) ] ,
A ( l 0 ) = { A 1 2 ( l 0 ) + A 2 2 ( l 0 ) + 2 A 1 ( l 0 ) A 2 ( l 0 ) cos [ ( β 1 β 2 ) l ] } 1 / 2 .
d Φ d k = c ( τ 1 τ 2 ) l ,

Metrics