Abstract

We describe parallel optical xor and xnor logic gates implemented with ferroelectric liquid-crystal (FLC) electro-optic elements to yield naturally a logic in which the binary gate outputs are indicated by two orthogonal polarizations of transmitted light. These gates absorb no power from the incident light beam and hence can be cascaded without the need to regenerate not inputs. The FLC elements also confer the advantages of low-voltage, low-power, submicrosecond switching and intrinsic two-state memory. Experimental results demonstrating the xor and xnor function are presented, along with measurements of the percentage of polarized light rotated into the two binary states.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).
  2. A. W. Lohmann, Appl. Opt. 25, 1594 (1986).
    [CrossRef] [PubMed]
  3. A. W. Lohmann, J. Weigelt, Appl. Opt. 26, 131 (1987).
    [CrossRef] [PubMed]
  4. V. A. Tsvetkov, N. A. Morozov, M. I. Ellinson, Sov. J. Quantum Electron. 4, 989 (1975).
    [CrossRef]
  5. N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
    [CrossRef]
  6. M. A. Handschy, N. A. Clark, Ferroelectrics 59, 69 (1984).
    [CrossRef]
  7. N. A. Clark, S. T. Lagerwall, Ferroelectrics 59, 25 (1984).
    [CrossRef]
  8. J. S. Patel, Opt. Eng. 26, 129 (1987).
  9. N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
    [CrossRef]
  10. L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).
  11. Chisso Corporation, Fine Chemicals Division, 2 Kamariya, Kanazawa-ku, Yokohama 236, Japan.
  12. J. Wahl, T. Matuszczyk, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. (to be published).
  13. D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).
  14. G. Moddel, K. M. Johnson, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 754, 33 (1987).

1987 (5)

D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).

G. Moddel, K. M. Johnson, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 754, 33 (1987).

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

J. S. Patel, Opt. Eng. 26, 129 (1987).

A. W. Lohmann, J. Weigelt, Appl. Opt. 26, 131 (1987).
[CrossRef] [PubMed]

1986 (2)

L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).

A. W. Lohmann, Appl. Opt. 25, 1594 (1986).
[CrossRef] [PubMed]

1984 (2)

M. A. Handschy, N. A. Clark, Ferroelectrics 59, 69 (1984).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Ferroelectrics 59, 25 (1984).
[CrossRef]

1983 (1)

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

1980 (1)

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

1975 (1)

V. A. Tsvetkov, N. A. Morozov, M. I. Ellinson, Sov. J. Quantum Electron. 4, 989 (1975).
[CrossRef]

Armitage, D.

D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).

Clark, N. A.

D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).

L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).

M. A. Handschy, N. A. Clark, Ferroelectrics 59, 69 (1984).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Ferroelectrics 59, 25 (1984).
[CrossRef]

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Ellinson, M. I.

V. A. Tsvetkov, N. A. Morozov, M. I. Ellinson, Sov. J. Quantum Electron. 4, 989 (1975).
[CrossRef]

Handschy, M. A.

G. Moddel, K. M. Johnson, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 754, 33 (1987).

D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).

M. A. Handschy, N. A. Clark, Ferroelectrics 59, 69 (1984).
[CrossRef]

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

Johnson, K. M.

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

G. Moddel, K. M. Johnson, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 754, 33 (1987).

L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).

Lagerwall, S. T.

N. A. Clark, S. T. Lagerwall, Ferroelectrics 59, 25 (1984).
[CrossRef]

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

J. Wahl, T. Matuszczyk, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. (to be published).

Lohmann, A. W.

Matuszczyk, T.

J. Wahl, T. Matuszczyk, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. (to be published).

Moddel, G.

G. Moddel, K. M. Johnson, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 754, 33 (1987).

Morozov, N. A.

V. A. Tsvetkov, N. A. Morozov, M. I. Ellinson, Sov. J. Quantum Electron. 4, 989 (1975).
[CrossRef]

Pagano-Stauffer, L. A.

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).

Patel, J. S.

J. S. Patel, Opt. Eng. 26, 129 (1987).

Thackara, J.

D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).

Tsvetkov, V. A.

V. A. Tsvetkov, N. A. Morozov, M. I. Ellinson, Sov. J. Quantum Electron. 4, 989 (1975).
[CrossRef]

Wahl, J.

J. Wahl, T. Matuszczyk, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. (to be published).

Weigelt, J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[CrossRef]

Ferroelectrics (2)

M. A. Handschy, N. A. Clark, Ferroelectrics 59, 69 (1984).
[CrossRef]

N. A. Clark, S. T. Lagerwall, Ferroelectrics 59, 25 (1984).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

N. A. Clark, M. A. Handschy, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. 94, 213 (1983).
[CrossRef]

Opt. Eng. (2)

J. S. Patel, Opt. Eng. 26, 129 (1987).

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, Opt. Eng. 26, 385 (1987).

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

D. Armitage, J. Thackara, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 60 (1987).

G. Moddel, K. M. Johnson, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 754, 33 (1987).

L. A. Pagano-Stauffer, K. M. Johnson, N. A. Clark, M. A. Handschy, Proc. Soc. Photo-Opt. Instrum. Eng. 684, 88 (1986).

Sov. J. Quantum Electron. (1)

V. A. Tsvetkov, N. A. Morozov, M. I. Ellinson, Sov. J. Quantum Electron. 4, 989 (1975).
[CrossRef]

Other (2)

Chisso Corporation, Fine Chemicals Division, 2 Kamariya, Kanazawa-ku, Yokohama 236, Japan.

J. Wahl, T. Matuszczyk, S. T. Lagerwall, Mol. Cryst. Liq. Cryst. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Electro-optic action of a FLC element. The FLC is in the form of a thin slab placed between transparent conductive electrode plates (not shown). The liquid crystal's smectic layers make an angle ψ to the horizontal. Also shown are the direction of the optical axis (molecular director) n ̂, the ferroelectric polarization P, and normally incident light rays with polarizations e ̂ vertical and horizontal. In the state shown to the left with n ̂ vertical, selected by positive applied voltage, the incident light is transmitted with polarization unchanged; in the state shown to the right with n at 2ψ ≈ 45° to vertical, selected by negative applied voltage, the polarization of either incident ray is rotated by 90°.

Fig. 2
Fig. 2

Photograph of a polarization-based optical logic gate.

Tables (2)

Tables Icon

Table 1 Truth Table for the xor Logic Gate Using Vertically Polarized Incident Laser Light (λ = 633 nm) with a Horizontal Analyzer at the Output

Tables Icon

Table 2 Measured Tilt Angles and T for Two Single-Cell FLC Devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

= 1 sin 2 ( 4 ψ ) sin 2 ( π Δ n d λ ) .
T = I I + I ,

Metrics