Abstract

The supersonic propagation velocity of the emission front of plasma produced by laser-induced breakdown of a micrometer-sized transparent droplet flowing in a gas was measured with a streak camera at three intensity levels. At low input intensity, the plasma velocities in the gas away from and toward the shadow face were determined. At medium input intensity, the plasma velocities in the gas outside the shadow face and within the liquid (traveling toward the illuminated face) were measured. At high input intensity, the plasma velocities in the gas outside the shadow face, within the liquid, and in the gas outside the illuminated face were deduced.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chýlek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3940 (1985).
    [CrossRef] [PubMed]
  2. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  3. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Opt. Lett. 12, 22 (1987).
    [CrossRef] [PubMed]
  4. P. Chýlek, M. A. Jarzembski, V. Srivastava, R. G. Pinnick, J. D. Pendleton, J. P. Cruncleton, Appl. Opt. 26, 760 (1987).
    [CrossRef] [PubMed]
  5. W.-F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” submitted to J. Opt. Soc. Am. B.
  6. P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
    [CrossRef]
  7. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na plumes resulting from laser-induced droplet explosion,” Appl. Opt. (to be published).
  8. A. Biswas, H. Latifi, P. Shah, L. J. Radziemski, R. L. Armstrong, Opt. Lett. 12, 313 (1987).
    [CrossRef] [PubMed]
  9. V. K. Mamonov, Sov. Phys. Tech. Phys. 30, 1386 (1985).
  10. R. L. Armstrong, P. J. O'Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986),
    [CrossRef]
  11. J. C. Carls, J. R. Brock, “Explosion of a water droplet by pulse laser heating,” Aerosol Sci. Technol. (to be published).
  12. S. M. Chitanvis, Appl. Opt. 25, 1837 (1986).
    [CrossRef] [PubMed]
  13. Y. B. Zel'dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Vol. 1.

1987 (4)

1986 (3)

R. L. Armstrong, P. J. O'Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986),
[CrossRef]

S. M. Chitanvis, Appl. Opt. 25, 1837 (1986).
[CrossRef] [PubMed]

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

1985 (2)

Armstrong, R. L.

Barber, P. W.

Benincasa, D. S.

Biswas, A.

Brock, J. R.

J. C. Carls, J. R. Brock, “Explosion of a water droplet by pulse laser heating,” Aerosol Sci. Technol. (to be published).

Carls, J. C.

J. C. Carls, J. R. Brock, “Explosion of a water droplet by pulse laser heating,” Aerosol Sci. Technol. (to be published).

Chang, R. K.

D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
[CrossRef] [PubMed]

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Opt. Lett. 12, 22 (1987).
[CrossRef] [PubMed]

W.-F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” submitted to J. Opt. Soc. Am. B.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na plumes resulting from laser-induced droplet explosion,” Appl. Opt. (to be published).

Chitanvis, S. M.

Chou, N. Y.

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

Chýlek, P.

Cruncleton, J. P.

Eickmans, J. H.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Opt. Lett. 12, 22 (1987).
[CrossRef] [PubMed]

W.-F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” submitted to J. Opt. Soc. Am. B.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na plumes resulting from laser-induced droplet explosion,” Appl. Opt. (to be published).

Hsieh, W.-F.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Opt. Lett. 12, 22 (1987).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
[CrossRef] [PubMed]

W.-F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” submitted to J. Opt. Soc. Am. B.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na plumes resulting from laser-induced droplet explosion,” Appl. Opt. (to be published).

Jarzembski, M. A.

Latifi, H.

Mamonov, V. K.

V. K. Mamonov, Sov. Phys. Tech. Phys. 30, 1386 (1985).

O'Rourke, P. J.

R. L. Armstrong, P. J. O'Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986),
[CrossRef]

Pendleton, J. D.

Pinnick, R. G.

Radziemski, L. J.

Raizer, Y. P.

Y. B. Zel'dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Vol. 1.

Shah, P.

Srivastava, V.

Zardecki, A.

R. L. Armstrong, P. J. O'Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986),
[CrossRef]

Zel'dovich, Y. B.

Y. B. Zel'dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Vol. 1.

Zhang, J.-Z.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. Chýlek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

Opt. Lett. (2)

Phys. Fluids (1)

R. L. Armstrong, P. J. O'Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986),
[CrossRef]

Sov. Phys. Tech. Phys. (1)

V. K. Mamonov, Sov. Phys. Tech. Phys. 30, 1386 (1985).

Other (4)

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na plumes resulting from laser-induced droplet explosion,” Appl. Opt. (to be published).

W.-F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere,” submitted to J. Opt. Soc. Am. B.

J. C. Carls, J. R. Brock, “Explosion of a water droplet by pulse laser heating,” Aerosol Sci. Technol. (to be published).

Y. B. Zel'dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of LIB locations and processes of a high-LIB-threshold liquid droplet in a low-LIB-threshold gas at (a) low I0, (b) medium I0, and (c) high I0. The shaded areas of the laser pulse represent the energy absorbed by the plasma produced by LIB (a) in the gas, (b) in the liquid, and (c) by the laser-supported detonation wave. These examples are pertinent to the experiment with transparent C8F18 droplets in Ar gas.

Fig. 2
Fig. 2

Streak-camera output (a) recorded on film and (b) detected by a computer-controlled vidicon. At low I0 (0.6 GW/cm2), LIB occurs only in an Ar region outside the shadow face. The propagation velocities away from and toward the shadow face are marked V1 and V2, respectively. The plasma velocity after reflection of the shock wave from the droplet is indicated as V2′ in (a).

Fig. 3
Fig. 3

At medium I0 (2.7 GW/cm2), LIB occurs first in Ar and then in the liquid, corresponding to the process shown in Fig. 1 (b). The plasma velocity ejected from the shadow face V1 and the plasma velocity V3 propagating within the liquid and toward the illuminated face (r/a = −1) are shown in the vidicon display. The three peaks in the internal plasma intensity (detected through a red filter) are associated with the three peaks in the input laser beam (shown in Fig. 2).

Fig. 4
Fig. 4

At high I0 [6.3 GW/cm2 for (a) and 7.2 GW/cm2 for (b)], LIB occurs first in Ar and then in the liquid, corresponding to the process shown in Fig. 1(c). The plasma ejected into the gas from the shadow face has a velocity V1, and the internal plasma front propagates with a velocity V3. When this front reaches the illuminated face (r/a = −1) and exits into the gas, an abrupt change in the velocity (V4) results. After the laser pulse is shut off, the plasma intensity decays and the propagation velocity V5 slows down in (b).

Metrics