Abstract

We have found conditions in which a structure consisting of an overdense warm plasma layer spaced between two underdense warm plasma layers becomes transparent to a p-polarized obliquely incident electromagnetic wave. The energy of the incident wave is transferred across the overdense region by a pair of coupled surface waves.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
    [CrossRef]
  2. A. K. Kotov, Fiz. Plazmy 11, 629 (1985)[Sov. J. Plasma Phys. 11, 368 (1985)].
  3. R. Dragila, S. Vukovic, submitted to J. Appl. Phys.
  4. S. Vukovic, R. Dragila, J. Opt. Soc. Am. B 3, 1585 (1986).
    [CrossRef]
  5. R. Dragila, B. Luther-Davies, S. Vukovic, Phys. Rev. Lett. 55, 1117 (1985).
    [CrossRef] [PubMed]
  6. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon, Oxford, 1964).
  7. E. M. Gromov, Fiz. Plazmy 10, 1219 (1984)[Sov. J. Plasma Phys. 10, 704 (1984)].

1986

1985

A. K. Kotov, Fiz. Plazmy 11, 629 (1985)[Sov. J. Plasma Phys. 11, 368 (1985)].

R. Dragila, B. Luther-Davies, S. Vukovic, Phys. Rev. Lett. 55, 1117 (1985).
[CrossRef] [PubMed]

1984

E. M. Gromov, Fiz. Plazmy 10, 1219 (1984)[Sov. J. Plasma Phys. 10, 704 (1984)].

1977

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

Aliev, Yu. M.

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

Cadez, V. M.

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

Dragila, R.

S. Vukovic, R. Dragila, J. Opt. Soc. Am. B 3, 1585 (1986).
[CrossRef]

R. Dragila, B. Luther-Davies, S. Vukovic, Phys. Rev. Lett. 55, 1117 (1985).
[CrossRef] [PubMed]

R. Dragila, S. Vukovic, submitted to J. Appl. Phys.

Ginzburg, V. L.

V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon, Oxford, 1964).

Gradov, O. M.

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

Gromov, E. M.

E. M. Gromov, Fiz. Plazmy 10, 1219 (1984)[Sov. J. Plasma Phys. 10, 704 (1984)].

Kotov, A. K.

A. K. Kotov, Fiz. Plazmy 11, 629 (1985)[Sov. J. Plasma Phys. 11, 368 (1985)].

Kyrie, A. Yu.

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

Luther-Davies, B.

R. Dragila, B. Luther-Davies, S. Vukovic, Phys. Rev. Lett. 55, 1117 (1985).
[CrossRef] [PubMed]

Vukovic, S.

S. Vukovic, R. Dragila, J. Opt. Soc. Am. B 3, 1585 (1986).
[CrossRef]

R. Dragila, B. Luther-Davies, S. Vukovic, Phys. Rev. Lett. 55, 1117 (1985).
[CrossRef] [PubMed]

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

R. Dragila, S. Vukovic, submitted to J. Appl. Phys.

Fiz. Plazmy

A. K. Kotov, Fiz. Plazmy 11, 629 (1985)[Sov. J. Plasma Phys. 11, 368 (1985)].

E. M. Gromov, Fiz. Plazmy 10, 1219 (1984)[Sov. J. Plasma Phys. 10, 704 (1984)].

J. Opt. Soc. Am. B

Phys. Rev. A

Yu. M. Aliev, S. Vukovic, O. M. Gradov, A. Yu. Kyrie, V. M. Cadez, Phys. Rev. A 15, 2120 (1977).
[CrossRef]

Phys. Rev. Lett.

R. Dragila, B. Luther-Davies, S. Vukovic, Phys. Rev. Lett. 55, 1117 (1985).
[CrossRef] [PubMed]

Other

V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon, Oxford, 1964).

R. Dragila, S. Vukovic, submitted to J. Appl. Phys.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Schematic illustration of the spatial plasma density (dielectric constant) profile.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

β 2 d 2 E z d z 2 + ( ω 2 c 2 k y 2 ) E z = i k y ( 1 β 2 ) d E y d z , d 2 E y d z 2 + ( ω 2 c 2 β 2 k y 2 ) E y = i k y ( 1 β 2 ) d E z d z , H = i c ω ( i k y E z + d E y d z ) ,
H = A 1 e ikz + A 2 e ikz , E y = k k 0 [ A 1 exp ( ikz ) A 2 exp ( ikz ) ] k y k p [ B 1 exp ( i k p z ) B 2 exp ( i k p z ) ] , E z = 1 [ A 1 exp ( ikz ) + A 2 exp ( ikz ) ] + k 0 k y [ B 1 exp ( i k p z ) + B 2 exp ( i k p z ) ] ,
R = C + δ D exp ( 2 κ 1 d ) δ C D exp ( 2 κ 1 d ) ,
δ = 1 i k 0 1 κ 1 1 + i k 0 1 κ 1 , C = { Q [ Q + δ P exp ( 2 κ 1 d ) ] + S [ ( R δ S + exp ( 2 κ 1 d ) ] } , D = P [ Q + δ P exp ( 2 κ 1 d ) ] + R + [ R δ S + exp ( 2 κ 1 d ) ] , P = i D 2 tan k p d + D + ( 1 i tan k p d ) + T , P = i D 2 tan k p d D + ( 1 i tan k p d ) T , Q = i D 1 tan k p d D ( 1 + i tan k p d ) T , Q = i D 1 tan k p d + D ( 1 i tan k p d ) + T , T = i α G sinh κ 2 a sinh κ p 2 a , R + = D + G sinh κ p 2 a V + , R = D G sinh κ p 2 a V , S + = D + G sinh κ p 2 a + V , S = D G sinh κ p 2 a + V + , V ± = i α sinh κ 2 a ( 1 ± G tanh κ p 2 a ) , D ± = 1 ± i α tanh κ 2 a . D 1 = D ( 1 i G 1 tanh κ p 2 a ) F 1 , D 1 = D ( 1 + i G 1 tanh κ p 2 a ) + F 1 , G = G 1 tan k p d , G 1 = κ p 2 β 1 k p β 2 , F = F 1 tan k p d , F 1 = i γ ( 1 β 1 β 2 ) k y 2 κ 1 k p ,
Q Q + R S + δ ( Q P Q P ) exp ( 2 κ 1 d ) 0.
[ Q δ P exp ( 2 κ 1 d ) ] [ Q + δ P exp ( 2 κ 1 d ) ] = 0 ,
Q Q + R S 0.

Metrics