Abstract

Distributed fluctuations in the effective index of a waveguide can explain all the nonideal optical characteristics (including optical cross talk) observed in Ti-diffused LiNbO3 directional-coupler switches. We find that these spatial-index fluctuations are not a result of the photolithographic processes used to define the channel waveguides. Measurements of undiffused Ti films have an envelope of concentration variations approximately seven times that of the diffused Ti channel waveguides. The magnitude of these inhomogeneities is consistent with that required to produce the optical cross talk in current devices.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. McCaughan, IEEE J. Lightwave Technol. LT-2, 51 (1984).
    [CrossRef]
  2. L. McCaughan, K. D. Choquette, IEEE J. Quantum Electron. QE-22, 947 (1986).
    [CrossRef]
  3. L. McCaughan, presented at SPIE Symposium on Integrated Optics, Cambridge, Mass., 1986.
  4. E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
    [CrossRef]
  5. M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
    [CrossRef]
  6. M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
    [CrossRef]
  7. C. E. Rice, R. J. Holmes, J. Appl. Phys. 60, 3836 (1986).
    [CrossRef]

1986 (2)

L. McCaughan, K. D. Choquette, IEEE J. Quantum Electron. QE-22, 947 (1986).
[CrossRef]

C. E. Rice, R. J. Holmes, J. Appl. Phys. 60, 3836 (1986).
[CrossRef]

1985 (1)

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

1984 (1)

L. McCaughan, IEEE J. Lightwave Technol. LT-2, 51 (1984).
[CrossRef]

1983 (1)

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

1978 (1)

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Armenise, M. N.

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

Canoli, C.

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

Carnera, A.

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

Cellotti, G.

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

Choquette, K. D.

L. McCaughan, K. D. Choquette, IEEE J. Quantum Electron. QE-22, 947 (1986).
[CrossRef]

DeSario, M.

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

Harvey, G. T.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

Holmes, R. J.

C. E. Rice, R. J. Holmes, J. Appl. Phys. 60, 3836 (1986).
[CrossRef]

Mazzoldi, P.

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

McCaughan, L.

L. McCaughan, K. D. Choquette, IEEE J. Quantum Electron. QE-22, 947 (1986).
[CrossRef]

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

L. McCaughan, IEEE J. Lightwave Technol. LT-2, 51 (1984).
[CrossRef]

L. McCaughan, presented at SPIE Symposium on Integrated Optics, Cambridge, Mass., 1986.

Minakata, M.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Miyazawa, S.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Murphy, E. J.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

Read, P. H.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

Rice, C. E.

C. E. Rice, R. J. Holmes, J. Appl. Phys. 60, 3836 (1986).
[CrossRef]

Rice, T. C.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

Saito, S.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

Shibata, M.

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

IEEE J. Lightwave Technol. (2)

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, IEEE J. Lightwave Technol. LT-3, 795 (1985).
[CrossRef]

L. McCaughan, IEEE J. Lightwave Technol. LT-2, 51 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. McCaughan, K. D. Choquette, IEEE J. Quantum Electron. QE-22, 947 (1986).
[CrossRef]

J. Appl. Phys. (3)

M. Minakata, S. Saito, M. Shibata, S. Miyazawa, J. Appl. Phys. 49, 4677 (1978).
[CrossRef]

M. N. Armenise, C. Canoli, M. DeSario, A. Carnera, P. Mazzoldi, G. Cellotti, J. Appl. Phys. 54, 6223 (1983).
[CrossRef]

C. E. Rice, R. J. Holmes, J. Appl. Phys. 60, 3836 (1986).
[CrossRef]

Other (1)

L. McCaughan, presented at SPIE Symposium on Integrated Optics, Cambridge, Mass., 1986.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of Ti-diffused LiNbO3 channel-waveguide structures. The directional-coupler element is composed of two straight waveguide segments separated by 12 μm. Electron-microprobe profiles of Ti concentration were made transverse to the guide axis at 2-μm intervals and averaged over the 7-μm width of the optical mode.

Fig. 2
Fig. 2

Plot of the fractional near-surface Ti concentration versus position along each channel waveguide of a directional coupler. The measurement was made with an electron microprobe, and the data were scaled to bulk Ti. Ti dimensions before diffusion are 5 μm × ∼67.5 nm.

Fig. 3
Fig. 3

Plot of the Ti concentration versus position across a diffused ∼67.5-nm Ti film (i.e, planar waveguide). The film was diffused in the same manner as the channel waveguides in Fig. 2.

Fig. 4
Fig. 4

Plot of the Ti concentration versus position across an undiffused ∼67.5-nm Ti film.

Tables (1)

Tables Icon

Table 1 Measured Ti-Concentration Spatial Fluctuations

Metrics