Abstract

An in-line light-saving photopolarimeter (ILLSP) is described that employs four highly reflecting detectors, each of which absorbs only a small polarization-dependent fraction of the light that falls upon it. The polarimeter conserves most of the power and direction and possibly the polarization of the incident beam whose Stokes parameters it measures. The principle of operation of the ILLSP can be extended to apply to light guided by an optical fiber using polarization-dependent evanescent-field coupling at four successive locations on the fiber that are separated by rotations induced by twists or the Faraday effect.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971).
  2. T. Gehrels, ed., Planets, Stars and Nebulae Studied with Photopolarimetry (U. Arizona Press, Tucson, Ariz., 1974).
  3. R. M. A. Azzam, D. L. Coffeen, eds., Optical Polarimetry—Instrumentation and Applications, Proc. Soc. Photo-Opt. Instrum. Eng. 112 (1977).
  4. R. H. Muller, R. M. A. Azzam, D. E. Aspnes, eds., Proceedings of the Fourth International Conference on Ellipsometry, Vol. 96 of Surface Science (North-Holland, Amsterdam, 1980).
  5. An alternative approach to light-saving photopolarimetry is to use a polarization-independent beam splitter (PIBS) to split off a small fraction of the incident beam whose polarization, which is identical to the input polarization, is measured by an off-line photopolarimeter. Most of the incident light is transmitted without change of polarization. An ideal PIBS for this purpose is the one described by R. M. A. Azzam, Opt. Lett. 10, 107, 110 (1985). Any beam splitter with known characteristics can also be used, if the measurement is appropriately corrected.
    [CrossRef] [PubMed]
  6. R. M. A. Azzam, Opt. Lett. 10, 309 (1985).
    [CrossRef] [PubMed]
  7. A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
    [CrossRef]
  8. R. Calvani, R. Caponi, F. Cisternino, IEEE J. Lightwave Technol. LT-4, 879 (1986).
  9. S. K. Sheem, H. F. Taylor, R. P. Moeller, W. K. Burns, Appl. Opt. 20, 1056 (1981).
    [CrossRef] [PubMed]
  10. R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
    [CrossRef]

1986 (1)

R. Calvani, R. Caponi, F. Cisternino, IEEE J. Lightwave Technol. LT-4, 879 (1986).

1985 (3)

1981 (1)

1977 (2)

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

R. M. A. Azzam, D. L. Coffeen, eds., Optical Polarimetry—Instrumentation and Applications, Proc. Soc. Photo-Opt. Instrum. Eng. 112 (1977).

Ashkin, A.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Azzam, R. M. A.

Bowers, J. E.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Burns, W. K.

Calvani, R.

R. Calvani, R. Caponi, F. Cisternino, IEEE J. Lightwave Technol. LT-4, 879 (1986).

Caponi, R.

R. Calvani, R. Caponi, F. Cisternino, IEEE J. Lightwave Technol. LT-4, 879 (1986).

Cisternino, F.

R. Calvani, R. Caponi, F. Cisternino, IEEE J. Lightwave Technol. LT-4, 879 (1986).

Clarke, D.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971).

Dziedzic, J. M.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Grainger, J. F.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971).

Moeller, R. P.

Pleibel, W.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Sheem, S. K.

Simon, A.

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

Stolen, R. H.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Taylor, H. F.

Ulrich, R.

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

IEEE J. Lightwave Technol. (2)

R. Calvani, R. Caponi, F. Cisternino, IEEE J. Lightwave Technol. LT-4, 879 (1986).

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Opt. Lett. (2)

Optical Polarimetry—Instrumentation and Applications, Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. M. A. Azzam, D. L. Coffeen, eds., Optical Polarimetry—Instrumentation and Applications, Proc. Soc. Photo-Opt. Instrum. Eng. 112 (1977).

Other (3)

R. H. Muller, R. M. A. Azzam, D. E. Aspnes, eds., Proceedings of the Fourth International Conference on Ellipsometry, Vol. 96 of Surface Science (North-Holland, Amsterdam, 1980).

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971).

T. Gehrels, ed., Planets, Stars and Nebulae Studied with Photopolarimetry (U. Arizona Press, Tucson, Ariz., 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of an ILLSP.

Fig. 2
Fig. 2

ILLSP using four highly reflecting detectors.

Fig. 3
Fig. 3

Light path for an ILLSP using five reflections.

Fig. 4
Fig. 4

Drawing of an ILFOP.

Fig. 5
Fig. 5

Sectional view at SS in Fig. 4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i 0 = k 0 ( S 0 S 0 0 ) , i l = k l ( S l 1 0 S l 0 ) , l = 1 , 2 , 3 ,
I = AS ,
S = A 1 I .
[ I 1 I 2 I 3 I 4 ] = A [ S 1 S 2 S 3 S 4 ] ,
A = [ I 1 I 2 I 3 I 4 ] [ S 1 S 2 S 3 S 4 ] 1 .

Metrics