Abstract

Coupling argon-laser light into absorbing SiO2–TiO2 waveguides, we observed at constant input power depending on the angle of incidence and the initial gap width, self-pulsing, bistability, or a special form of bistability with either a constant or a self-pulsing output. The system's dynamics is governed by two effects with different time constants, both caused by heating of the waveguide by the incoupled absorbed power: (1) thermal expansion of waveguide and prism, which reduces the coupling gap width and thus changes the incoupling efficiency, and (2) desorption of H2O molecules from the SiO2–TiO2 layer, which changes the effective guide index.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985), Chap. 6 and references therein.
  2. W. Lukosz, P. Pirani, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 108.
  3. W. Lukosz, P. Pirani, V. Briguet, Opt. Lett. 12, 23 (1987).
    [CrossRef]
  4. K. Tiefenthaler, W. Lukosz, Opt. Lett. 9, 137 (1984);Thin Solid Films 126, 205 (1985).
    [CrossRef] [PubMed]
  5. V. Briguet, U. Keiler, K. Tiefenthaler, Optics Laboratory, ETH, Zurich, Switzerland (personal communication).
  6. W. Lukosz, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 87.
    [CrossRef]

1987 (1)

W. Lukosz, P. Pirani, V. Briguet, Opt. Lett. 12, 23 (1987).
[CrossRef]

1984 (1)

Briguet, V.

W. Lukosz, P. Pirani, V. Briguet, Opt. Lett. 12, 23 (1987).
[CrossRef]

V. Briguet, U. Keiler, K. Tiefenthaler, Optics Laboratory, ETH, Zurich, Switzerland (personal communication).

W. Lukosz, P. Pirani, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 108.

W. Lukosz, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 87.
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985), Chap. 6 and references therein.

Keiler, U.

V. Briguet, U. Keiler, K. Tiefenthaler, Optics Laboratory, ETH, Zurich, Switzerland (personal communication).

Lukosz, W.

W. Lukosz, P. Pirani, V. Briguet, Opt. Lett. 12, 23 (1987).
[CrossRef]

K. Tiefenthaler, W. Lukosz, Opt. Lett. 9, 137 (1984);Thin Solid Films 126, 205 (1985).
[CrossRef] [PubMed]

W. Lukosz, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 87.
[CrossRef]

W. Lukosz, P. Pirani, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 108.

Pirani, P.

W. Lukosz, P. Pirani, V. Briguet, Opt. Lett. 12, 23 (1987).
[CrossRef]

W. Lukosz, P. Pirani, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 108.

Tiefenthaler, K.

K. Tiefenthaler, W. Lukosz, Opt. Lett. 9, 137 (1984);Thin Solid Films 126, 205 (1985).
[CrossRef] [PubMed]

V. Briguet, U. Keiler, K. Tiefenthaler, Optics Laboratory, ETH, Zurich, Switzerland (personal communication).

Opt. Lett. (2)

Other (4)

V. Briguet, U. Keiler, K. Tiefenthaler, Optics Laboratory, ETH, Zurich, Switzerland (personal communication).

W. Lukosz, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 87.
[CrossRef]

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985), Chap. 6 and references therein.

W. Lukosz, P. Pirani, V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds., Vol. 8 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1986), p. 108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Prism coupler. P, input power of wavelength λ; α, angle of incidence; PR, output (reflected) power; F, waveguiding film; S, substrate; R, reflectance of low power He–Ne (λp = 632.8 nm) probe beam (— — —) monitoring the gap width d(t) as a function of time t.

Fig. 2
Fig. 2

Self-pulsing. Output PR and reflectance RS of probe beam versus time t. Full scale, 5.5 sec. Parameters: P = 400 mW; N ̅ o = 1 × 10 3; d0 = 240 nm.

Fig. 3
Fig. 3

Calculated incoupling efficiency ηa versus gap width d for TE0 mode in ITO–SiO2–TiO2 waveguide and LaF22 glass coupling prism.

Fig. 4
Fig. 4

Top: Regions of SP (solid lines) and of OB (dashed lines) for P = 300 mW (thicker lines) and P = 400 mW (thinner lines). The star indicates the values of d and N ̅ o for optimum low-power incoupling, i.e., the position of the maximum of ηa (d, N). Bottom: PR versus N ̅ o at constants d0 = 220 nm and P = 300 mW. ↔, Half-width of the experimental incoupling efficiency ηa curve for low input powers P and large gaps.

Fig. 5
Fig. 5

Output PR versus input power P. Parameters d0 and N ̅ o: 1, d0 = 185 nm, N ̅ o = 2 × 10 3; 2, d0 = 250 nm, N ̅ o = 1 × 10 3; 3, d0 = 250 nm, N ̅ o = 3 × 10 3; 4, d0 = 185 nm, N ̅ o = 5 × 10 3. Scan time 500 sec.

Fig. 6
Fig. 6

Bistability. Periodic switching between a state with constant output and a state with SP output. PR(t), output power; RS(t), reflectance of He–Ne probe beam monitoring the gap width d(t); P(t), input pwer versus time t. Full scale, 80 sec. Parameter values: N ̅ o = 1.35 × 10 3 and d0 = 275 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N ̅ ( t ) N ( t ) n p sin α = N ( t ) N o + N ̅ o ,
N ̅ o n p ( sin α o sin α ) .

Metrics