Abstract

Nonlinear-optical properties of various salts and water solutions were measured using an 8-psec laser pulse at 530 nm. It was found that the optical Kerr effect and supercontinuum signals were several times larger in saline water than in pure water. The optical Kerr effect signals from saturated aqueous solutions of ZnCl2 were about 35 times greater, and the self-phase-modulation signals from saturated aqueous solutions of K2ZnCl4 were about 10 times greater.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, and 1217 (1970).
    [CrossRef]
  2. S. L. Shapiro, ed., Ultrashort Light Pulses (Springer-Verlag, New York, 1977);R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).
  3. R. R. Alfano, ed., Biological Events Probed by Ultrafast Laser Spectroscopy (Academic, New York, 1982);Semiconductors Probed by Ultrafast Laser Spectroscopy (Academic, New York, 1974), Vols. 1 and 2.
  4. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, Opt. Lett. 8, 1 (1983).
    [CrossRef] [PubMed]
  5. R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
    [CrossRef]
  6. P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
    [CrossRef]
  7. G. E. Walrafen, Advan. Mol. Relaxation Processes 3, 43 (1972).
    [CrossRef]
  8. G. E. Walrafen, J. Chem. Phys. 44, 1546 (1966).
    [CrossRef]
  9. P. G. Klemens, Phys. Rev. 148, 845 (1964).
    [CrossRef]
  10. J. Burgess, Metal Ions in Solution (Wiley, New York, 1978), Table 4.8 on p. 112 and Table 5.7 on p. 147.
  11. P. P. Ho, R. R. Alfano, J. Chem. Phys. 68, 4551 (1978).
    [CrossRef]

1986 (1)

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

1983 (1)

1979 (1)

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

1978 (1)

P. P. Ho, R. R. Alfano, J. Chem. Phys. 68, 4551 (1978).
[CrossRef]

1972 (1)

G. E. Walrafen, Advan. Mol. Relaxation Processes 3, 43 (1972).
[CrossRef]

1970 (1)

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, and 1217 (1970).
[CrossRef]

1966 (1)

G. E. Walrafen, J. Chem. Phys. 44, 1546 (1966).
[CrossRef]

1964 (1)

P. G. Klemens, Phys. Rev. 148, 845 (1964).
[CrossRef]

Alfano, R. R.

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

P. P. Ho, R. R. Alfano, J. Chem. Phys. 68, 4551 (1978).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, and 1217 (1970).
[CrossRef]

Burgess, J.

J. Burgess, Metal Ions in Solution (Wiley, New York, 1978), Table 4.8 on p. 112 and Table 5.7 on p. 147.

Fork, R. L.

Hirlimann, C.

Ho, P. P.

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

P. P. Ho, R. R. Alfano, J. Chem. Phys. 68, 4551 (1978).
[CrossRef]

Jimbo, T.

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

Klemens, P. G.

P. G. Klemens, Phys. Rev. 148, 845 (1964).
[CrossRef]

Li, Q. X.

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

Manassah, J. T.

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

Shank, C. V.

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, and 1217 (1970).
[CrossRef]

Walrafen, G. E.

G. E. Walrafen, Advan. Mol. Relaxation Processes 3, 43 (1972).
[CrossRef]

G. E. Walrafen, J. Chem. Phys. 44, 1546 (1966).
[CrossRef]

Yen, R.

Advan. Mol. Relaxation Processes (1)

G. E. Walrafen, Advan. Mol. Relaxation Processes 3, 43 (1972).
[CrossRef]

J. Chem. Phys. (2)

G. E. Walrafen, J. Chem. Phys. 44, 1546 (1966).
[CrossRef]

P. P. Ho, R. R. Alfano, J. Chem. Phys. 68, 4551 (1978).
[CrossRef]

Opt. Lett. (2)

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, Opt. Lett. 8, 1 (1983).
[CrossRef] [PubMed]

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 10, 626 (1986).
[CrossRef]

Phys. Rev. (1)

P. G. Klemens, Phys. Rev. 148, 845 (1964).
[CrossRef]

Phys. Rev. A (1)

P. P. Ho, R. R. Alfano, Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584, 592, and 1217 (1970).
[CrossRef]

Other (3)

S. L. Shapiro, ed., Ultrashort Light Pulses (Springer-Verlag, New York, 1977);R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

R. R. Alfano, ed., Biological Events Probed by Ultrafast Laser Spectroscopy (Academic, New York, 1982);Semiconductors Probed by Ultrafast Laser Spectroscopy (Academic, New York, 1974), Vols. 1 and 2.

J. Burgess, Metal Ions in Solution (Wiley, New York, 1978), Table 4.8 on p. 112 and Table 5.7 on p. 147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram for USP measurements. The USP is measured with both a spectrograph and a spectrometer. Filter sets consisted of F1, 2 Corning 1-75; F2, Corning 1-75, a 530-nm narrow-band filter, and neutral-density filters; F3,F4, Corning 1-75 and 3-3-67 for Stokes side measurements and Corning 1-75 and 2-5-57 for anti-Stokes side measurements. Neutral-density filters are also used to adjust light intensity. L's, lenses; M's, mirrors; D, photodetector.

Fig. 2
Fig. 2

SPM spectrum of a (a) saturated K2ZnCl4 solution, (b) 0.6-M K2ZnCl4, and (c) pure water. The SRS signal (645 nm) is stronger in pure water, and it disappears in high-concentration solution.

Fig. 3
Fig. 3

The salt concentration dependence of the SPM signal (a) on the Stokes side and (b) on the anti-Stokes side at 20°C. Each datum point is the average of about 10 laser shots. The insets are the same data plotted as a function of K+-ion concentration for KCl and K2ZnCl4 aqueous solutions, where N is Avogadro's number.

Tables (1)

Tables Icon

Table 1 Enhancement of the USL and Optical Kerr Effect Signals in Saturated Aqueous Solutions at 20°Ca

Metrics