Abstract

An optical correlator based on acoustoelectro-optic interaction is proposed. The device is experimentally demonstrated with a LiNbO3 crystal in which acoustic waves are launched by a piezoelectric transducer and electric fields are established through the photorefractive effect.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, H. Lee, G. Sirat, Appl. Phys. Lett. 46, 215 (1985).
    [CrossRef]
  2. H. Lee, Appl. Phys. Lett. 49, 24 (1896).
    [CrossRef]
  3. P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
    [CrossRef]
  4. J. J. Wiczer, H. Merkelo, Appl. Phys. Lett. 30, 439 (1976).
    [CrossRef]
  5. F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
    [CrossRef]
  6. W. T. Rhodes, Proc. IEEE, 69, 65 (1981).
    [CrossRef]
  7. A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

1986 (1)

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

1985 (2)

D. Psaltis, H. Lee, G. Sirat, Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

1981 (1)

W. T. Rhodes, Proc. IEEE, 69, 65 (1981).
[CrossRef]

1976 (1)

J. J. Wiczer, H. Merkelo, Appl. Phys. Lett. 30, 439 (1976).
[CrossRef]

1968 (1)

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

1896 (1)

H. Lee, Appl. Phys. Lett. 49, 24 (1896).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Das, P.

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Lee, H.

D. Psaltis, H. Lee, G. Sirat, Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

H. Lee, Appl. Phys. Lett. 49, 24 (1896).
[CrossRef]

Litynski, D. M.

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

Marrakchi, A.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Merkelo, H.

J. J. Wiczer, H. Merkelo, Appl. Phys. Lett. 30, 439 (1976).
[CrossRef]

Psaltis, D.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

D. Psaltis, H. Lee, G. Sirat, Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

Rhodes, W. T.

W. T. Rhodes, Proc. IEEE, 69, 65 (1981).
[CrossRef]

Scholtz, A. V.

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

Shklarsky, D.

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

Sirat, G.

D. Psaltis, H. Lee, G. Sirat, Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

Tanguay, A. R.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Urillo, A. J.

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

Wiczer, J. J.

J. J. Wiczer, H. Merkelo, Appl. Phys. Lett. 30, 439 (1976).
[CrossRef]

Yu, J.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Appl. Phys. Lett. (5)

D. Psaltis, H. Lee, G. Sirat, Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

H. Lee, Appl. Phys. Lett. 49, 24 (1896).
[CrossRef]

P. Das, A. V. Scholtz, A. J. Urillo, D. M. Litynski, D. Shklarsky, Appl. Phys. Lett. 49, 1016 (1986).
[CrossRef]

J. J. Wiczer, H. Merkelo, Appl. Phys. Lett. 30, 439 (1976).
[CrossRef]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Opt. Eng. (1)

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Proc. IEEE (1)

W. T. Rhodes, Proc. IEEE, 69, 65 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Wave-vector diagram of the photorefractive AEO correlator. (b) Configuration of the correlator.

Fig. 2
Fig. 2

Input pattern for the autocorrelation experiment.

Fig. 3
Fig. 3

(a) Modulation of the input electrical signal to the acousto-optic device. (b) Oscilloscope traces of the modulated electrical signal (top) and the two windows corresponding to the input pattern (bottom).

Fig. 4
Fig. 4

Oscilloscope traces of the incoherent autocorrelation (top) and the two windows (bottom).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d F 2 / d r = j μ 12 F 1 ,
d F 3 / d r = j μ 23 F 2 ,
F 1 ( 0 ) = F 0 , F 2 ( 0 ) = 0 , F 3 ( 0 ) = 0 .
I 2 = η 12 | F 0 | 2 ,
I 3 = ( 1 / 4 ) η 12 η 23 | F 0 | 2 .
F 3 f ( t + x / υ ) h ( x )
Δ f = ( ½ ) { ( n 0 Λ 2 / λ L ) / [ 1 + Λ n e ( ϑ ) sin ϑ / λ ] } f c ,
h ( x ) f ( t + x / υ ) exp [ j ( x x 1 / λ f ) ] d x ,
I coh ( t ) = | h ( x ) f ( t + x / υ ) d x | 2 .
I inc ( t ) = | h ( x ) | 2 | f ( t + x / υ ) | 2 d x .

Metrics