Abstract

Two ideal concentrators with fin absorbers in dielectric rhombuses are described. Expressions for the design, height, and mirror length are derived. The devices have a concentration factor (n/sin ϑM) that is clearly higher than the traditional air-filled ideal concentrators. They do not require more mirrors or space and, when such easily available dielectrics as glass and water are used, offer useful configurations for purposes such as the collection of solar energy.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, J. Opt. Soc. Am. 60, 245 (1970).
    [CrossRef]
  2. H. Hinterberger, R. Winston, Rev. Sci. Instrum. 37, 1094 (1966).
    [CrossRef]
  3. R. Winston, Solar Energy 16, 89 (1974).
    [CrossRef]
  4. V. K. Baranov, Geliotekhnika 2, 11 (1966).
  5. V. K. Baranov, Geliotekhnika 2, 36 (1975).
  6. V. K. Baranov, Opt-Mekh. Promst. 6 (1965).
  7. H. Tabor, Solar Energy 23, 629 (1984).
    [CrossRef]
  8. R. Winston, H. Hinterberger, Solar Energy 17, 255 (1975).
    [CrossRef]
  9. F. Trombe et al., U.S. Patent presented by D. B. McKenney at the National Science Foundation Solar Thermal Review, 1974;A. B. Meinel, M. P. Meinel, Applied Solar Energy: An Introduction (Addison-Wesley, Reading, Mass., 1976).
  10. A. Rabl, Solar Energy 18, 93 (1976).
    [CrossRef]
  11. D. R. Mills, J. E. Giutronich, Solar Energy 25, 85 (1979).
    [CrossRef]
  12. W. R. McIntire, Solar Energy 25, 215 (1980).
    [CrossRef]
  13. E. J. Guay, Solar Energy 24, 265 (1979).
    [CrossRef]
  14. I. R. Edmonds, Opt. Lett. 11, 490 (1986).
    [CrossRef] [PubMed]
  15. F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
    [CrossRef]

1986 (2)

F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
[CrossRef]

I. R. Edmonds, Opt. Lett. 11, 490 (1986).
[CrossRef] [PubMed]

1984 (1)

H. Tabor, Solar Energy 23, 629 (1984).
[CrossRef]

1980 (1)

W. R. McIntire, Solar Energy 25, 215 (1980).
[CrossRef]

1979 (2)

E. J. Guay, Solar Energy 24, 265 (1979).
[CrossRef]

D. R. Mills, J. E. Giutronich, Solar Energy 25, 85 (1979).
[CrossRef]

1976 (1)

A. Rabl, Solar Energy 18, 93 (1976).
[CrossRef]

1975 (2)

R. Winston, H. Hinterberger, Solar Energy 17, 255 (1975).
[CrossRef]

V. K. Baranov, Geliotekhnika 2, 36 (1975).

1974 (1)

R. Winston, Solar Energy 16, 89 (1974).
[CrossRef]

1970 (1)

1966 (2)

V. K. Baranov, Geliotekhnika 2, 11 (1966).

H. Hinterberger, R. Winston, Rev. Sci. Instrum. 37, 1094 (1966).
[CrossRef]

1965 (1)

V. K. Baranov, Opt-Mekh. Promst. 6 (1965).

Baranov, V. K.

V. K. Baranov, Geliotekhnika 2, 36 (1975).

V. K. Baranov, Geliotekhnika 2, 11 (1966).

V. K. Baranov, Opt-Mekh. Promst. 6 (1965).

Bloisi, F.

F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
[CrossRef]

Edmonds, I. R.

Giutronich, J. E.

D. R. Mills, J. E. Giutronich, Solar Energy 25, 85 (1979).
[CrossRef]

Guay, E. J.

E. J. Guay, Solar Energy 24, 265 (1979).
[CrossRef]

Hinterberger, H.

R. Winston, H. Hinterberger, Solar Energy 17, 255 (1975).
[CrossRef]

H. Hinterberger, R. Winston, Rev. Sci. Instrum. 37, 1094 (1966).
[CrossRef]

McIntire, W. R.

W. R. McIntire, Solar Energy 25, 215 (1980).
[CrossRef]

McKenney, D. B.

F. Trombe et al., U.S. Patent presented by D. B. McKenney at the National Science Foundation Solar Thermal Review, 1974;A. B. Meinel, M. P. Meinel, Applied Solar Energy: An Introduction (Addison-Wesley, Reading, Mass., 1976).

Mills, D. R.

D. R. Mills, J. E. Giutronich, Solar Energy 25, 85 (1979).
[CrossRef]

Rabl, A.

A. Rabl, Solar Energy 18, 93 (1976).
[CrossRef]

Ruggi, D.

F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
[CrossRef]

Suraci, F.

F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
[CrossRef]

Tabor, H.

H. Tabor, Solar Energy 23, 629 (1984).
[CrossRef]

Trombe, F.

F. Trombe et al., U.S. Patent presented by D. B. McKenney at the National Science Foundation Solar Thermal Review, 1974;A. B. Meinel, M. P. Meinel, Applied Solar Energy: An Introduction (Addison-Wesley, Reading, Mass., 1976).

Vicari, L.

F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
[CrossRef]

Winston, R.

R. Winston, H. Hinterberger, Solar Energy 17, 255 (1975).
[CrossRef]

R. Winston, Solar Energy 16, 89 (1974).
[CrossRef]

R. Winston, J. Opt. Soc. Am. 60, 245 (1970).
[CrossRef]

H. Hinterberger, R. Winston, Rev. Sci. Instrum. 37, 1094 (1966).
[CrossRef]

Geliotekhnika (2)

V. K. Baranov, Geliotekhnika 2, 11 (1966).

V. K. Baranov, Geliotekhnika 2, 36 (1975).

J. Opt. Soc. Am. (1)

Opt-Mekh. Promst. (1)

V. K. Baranov, Opt-Mekh. Promst. 6 (1965).

Opt. Lett. (1)

Rev. Phys. Appl. (1)

F. Bloisi, L. Vicari, D. Ruggi, F. Suraci, Rev. Phys. Appl. 21, 163 (1986).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Hinterberger, R. Winston, Rev. Sci. Instrum. 37, 1094 (1966).
[CrossRef]

Solar Energy (7)

R. Winston, Solar Energy 16, 89 (1974).
[CrossRef]

H. Tabor, Solar Energy 23, 629 (1984).
[CrossRef]

R. Winston, H. Hinterberger, Solar Energy 17, 255 (1975).
[CrossRef]

A. Rabl, Solar Energy 18, 93 (1976).
[CrossRef]

D. R. Mills, J. E. Giutronich, Solar Energy 25, 85 (1979).
[CrossRef]

W. R. McIntire, Solar Energy 25, 215 (1980).
[CrossRef]

E. J. Guay, Solar Energy 24, 265 (1979).
[CrossRef]

Other (1)

F. Trombe et al., U.S. Patent presented by D. B. McKenney at the National Science Foundation Solar Thermal Review, 1974;A. B. Meinel, M. P. Meinel, Applied Solar Energy: An Introduction (Addison-Wesley, Reading, Mass., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Construction of the concentrator. PQ is the entrance aperture, PCQ = 2ϑM is the acceptance angle, AMQ is the right-hand mirror, ABCD is the dielectric rhombus, and AC is the fin absorber.

Fig. 2
Fig. 2

a, Type a concentrator; vertical fin absorber. b, Type b concentrator; horizontal fin absorber.

Fig. 3
Fig. 3

Comparison of semiacceptance angle for type a (solid line) and type b (dashed line) concentrators versus refractive index. Shaded area shows the range of interest for solar-energy use: 30° < ϑM < 60°. The values of the refractive indices of some common materials are shown on the abscissa: a, water; b, crown glass; c, polystyrene, mineral oil, or Plexiglas; d, flint glass.

Fig. 4
Fig. 4

Comparison of concentration factor for type a (solid line) and type b (dashed line) concentrators versus refractive index. Shaded area shows the range of interest for solar-energy use: 30° < ϑM < 60°. The values of the refractive indices of some common materials are shown on the abscissa: a, water; b, crown glass; c, polystyrene, mineral oil, or Plexiglas; d, flint glass.

Fig. 5
Fig. 5

Comparison of concentration factor for type a (solid line), type b (dashed line), and traditional fin absorber (dotted line) concentrators versus semiacceptance angle ϑM.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

C * = 1 / sin ϑ M .
C = n / sin ϑ M > C * .
CDA = 2 i 0 ,
n = 1 / cos ϑ M .
AC = 2 CD cos ϑ M ,
C = OQ AC = n sin ϑ M .
BCD = 2 i 0 ,
n = 1 / sin ϑ M .
C = OQ BD = n sin ϑ M .
Type a : ϑ M = 41.2 ° , C = 2 ; Type b : ϑ M = 48.8 ° , C = 1.8 .
L d = 2 ( cos ϑ M sin ϑ M + sin ϑ M ln 1 + cos ϑ M sin ϑ M + ϑ M sin ϑ M ) .
h d = cos ϑ M sin ϑ M + sin ϑ M 1 + cos ϑ M 2 ,
h F d = cos ϑ M sin ϑ M + sin ϑ M .

Metrics