Abstract

Gas sensing using evanescent waves of optical fibers is investigated. Methane gas is detected by means of its strong optical absorption of the 3.392-μm line of a He–Ne laser. A single fiber is used as both a sensor and an optical transmission line. The sensor has a small diameter, ranging from 1.8 to 7 μm, made by heating and expanding a part of a step-index silica fiber. An evanescent wave of 5 to 40% of the total propagating power is generated outside the fiber. When a sensor fiber of 1.8-μm diameter and 10-mm length is used, the minimum detectable concentration of methane is less than the lowest explosive limit of 5%.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Inaba, K. Chan, H. Ito, J. Opt. Soc. Am. 73, 1954 (1983).
  2. W. B. Grant, “He–Ne and cw CO2 laser long path system for gas detection,” Appl. Opt. 25, 709 (1986).
    [Crossref] [PubMed]
  3. Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
    [Crossref]
  4. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 2.
  5. B. Lewis, G. Elbe, Combustion, Flames and Explosions of Gases, 2nd ed. (Academic, New York, 1961), Chap. 5.
  6. H. Tanaka, T. Ueki, H. Tai, T. Yoshino, in Digest of the Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1985), postdeadline papers PDS-1 and PDS-2.

1986 (1)

1983 (1)

H. Inaba, K. Chan, H. Ito, J. Opt. Soc. Am. 73, 1954 (1983).

1973 (1)

Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
[Crossref]

Branneh, E.

Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
[Crossref]

Chan, K.

H. Inaba, K. Chan, H. Ito, J. Opt. Soc. Am. 73, 1954 (1983).

Elbe, G.

B. Lewis, G. Elbe, Combustion, Flames and Explosions of Gases, 2nd ed. (Academic, New York, 1961), Chap. 5.

Grant, W. B.

Inaba, H.

H. Inaba, K. Chan, H. Ito, J. Opt. Soc. Am. 73, 1954 (1983).

Ito, H.

H. Inaba, K. Chan, H. Ito, J. Opt. Soc. Am. 73, 1954 (1983).

Kucerovsky, Z.

Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
[Crossref]

Lewis, B.

B. Lewis, G. Elbe, Combustion, Flames and Explosions of Gases, 2nd ed. (Academic, New York, 1961), Chap. 5.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 2.

Pauleket, K. C.

Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
[Crossref]

Rumbold, D. G.

Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
[Crossref]

Tai, H.

H. Tanaka, T. Ueki, H. Tai, T. Yoshino, in Digest of the Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1985), postdeadline papers PDS-1 and PDS-2.

Tanaka, H.

H. Tanaka, T. Ueki, H. Tai, T. Yoshino, in Digest of the Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1985), postdeadline papers PDS-1 and PDS-2.

Ueki, T.

H. Tanaka, T. Ueki, H. Tai, T. Yoshino, in Digest of the Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1985), postdeadline papers PDS-1 and PDS-2.

Yoshino, T.

H. Tanaka, T. Ueki, H. Tai, T. Yoshino, in Digest of the Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1985), postdeadline papers PDS-1 and PDS-2.

Appl. Opt. (1)

J. Appl. Meteorol. (1)

Z. Kucerovsky, E. Branneh, K. C. Pauleket, D. G. Rumbold, J. Appl. Meteorol. 12, 1387 (1973).
[Crossref]

J. Opt. Soc. Am. (1)

H. Inaba, K. Chan, H. Ito, J. Opt. Soc. Am. 73, 1954 (1983).

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974), Chap. 2.

B. Lewis, G. Elbe, Combustion, Flames and Explosions of Gases, 2nd ed. (Academic, New York, 1961), Chap. 5.

H. Tanaka, T. Ueki, H. Tai, T. Yoshino, in Digest of the Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, D.C., 1985), postdeadline papers PDS-1 and PDS-2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of gas detection using an evanescent wave.

Fig. 2
Fig. 2

Transmittance of a silica fiber at 3.392 μm measured as a function of fiber length.

Fig. 3
Fig. 3

Schematic diagram of experimental setup.

Fig. 4
Fig. 4

Output light power for different methane concentrations.

Fig. 5
Fig. 5

Absorption (–In P/P0) versus methane concentration, obtained from Fig. 4.

Tables (1)

Tables Icon

Table 1 Characteristics of Evanescent-Wave Fiber Sensors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P = P 0 exp ( α ruL ) ,
V = ( π d / λ ) n 2 1 ,
V = 1.04 d .
d < 2.3 μ m .

Metrics