Abstract

Pulse shortening by a factor of 2700× at 1.32 μm has been realized by means of a two-stage pulse compression. In the first stage, 90-psec pulses from a cw mode-locked Nd:YAG laser were compressed to ∼1.5 psec by using a standard fiber–grating-pair configuration. Subsequent propagation of these pulses through ∼20 m of single-mode optical fiber with a minimum dispersion at 1.27 μm led to a final pulse width of 33 fsec. This represents the shortest reported pulse generated at 1.32 μm by using the technique described above as well as the largest overall compression factor using optical fibers yet reported.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
    [CrossRef]
  2. F. Gires, P. Tournois, Compt. Rend. 258, 6112 (1964).
  3. H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
    [CrossRef]
  4. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
    [CrossRef]
  5. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  6. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  7. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  8. N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
    [CrossRef]
  9. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
    [CrossRef]
  10. L. F. Mollenauer, Opt. News 12(5), 42 (1986).
    [CrossRef]
  11. B. J. Ainslie, C. R. Day, IEEE J. Lightwave Technol. LT-4, 967 (1986).
    [CrossRef]
  12. B. P. Nelson, J. Ainslie, D. Cooper, Electron. Lett. 21, 274 (1985).
    [CrossRef]
  13. K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).
    [CrossRef] [PubMed]
  14. K. Tai, A. Tomita, Appl. Phys. Lett. 48, 1033 (1986),
    [CrossRef]
  15. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Quantum Electron. (to be published).
  16. R. H. Stolen, L. E. Mollenauer, W. J. Tomlinson, Opt. Lett. 8, 186 (1986).
    [CrossRef]
  17. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]
  18. K. J. Blow, N. J. Doran, D. Wood, Opt. Lett. 12, 202 (1987).
    [CrossRef] [PubMed]

1987 (1)

1986 (5)

K. Tai, A. Tomita, Appl. Phys. Lett. 48, 1033 (1986),
[CrossRef]

R. H. Stolen, L. E. Mollenauer, W. J. Tomlinson, Opt. Lett. 8, 186 (1986).
[CrossRef]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
[CrossRef] [PubMed]

L. F. Mollenauer, Opt. News 12(5), 42 (1986).
[CrossRef]

B. J. Ainslie, C. R. Day, IEEE J. Lightwave Technol. LT-4, 967 (1986).
[CrossRef]

1985 (3)

B. P. Nelson, J. Ainslie, D. Cooper, Electron. Lett. 21, 274 (1985).
[CrossRef]

K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).
[CrossRef] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

1983 (2)

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
[CrossRef]

1981 (2)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1973 (1)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

1964 (1)

F. Gires, P. Tournois, Compt. Rend. 258, 6112 (1964).

Ainslie, B. J.

B. J. Ainslie, C. R. Day, IEEE J. Lightwave Technol. LT-4, 967 (1986).
[CrossRef]

Ainslie, J.

B. P. Nelson, J. Ainslie, D. Cooper, Electron. Lett. 21, 274 (1985).
[CrossRef]

Balant, A. C.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Blow, K. J.

Chen, H. H.

Cooper, D.

B. P. Nelson, J. Ainslie, D. Cooper, Electron. Lett. 21, 274 (1985).
[CrossRef]

Day, C. R.

B. J. Ainslie, C. R. Day, IEEE J. Lightwave Technol. LT-4, 967 (1986).
[CrossRef]

Doran, N. J.

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

Fork, R. L.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
[CrossRef]

Gires, F.

F. Gires, P. Tournois, Compt. Rend. 258, 6112 (1964).

Gomes, A. S. L.

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Quantum Electron. (to be published).

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Quantum Electron. (to be published).

Grischkowsky, D.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Hasegawa, A.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

Kodama, Y.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Lee, Y. C.

Menyuk, C. R.

Mollenauer, L. E.

Mollenauer, L. F.

L. F. Mollenauer, Opt. News 12(5), 42 (1986).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Nelson, B. P.

B. P. Nelson, J. Ainslie, D. Cooper, Electron. Lett. 21, 274 (1985).
[CrossRef]

K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).
[CrossRef] [PubMed]

Shank, C. V.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
[CrossRef]

Stolen, R. H.

R. H. Stolen, L. E. Mollenauer, W. J. Tomlinson, Opt. Lett. 8, 186 (1986).
[CrossRef]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Tai, K.

K. Tai, A. Tomita, Appl. Phys. Lett. 48, 1033 (1986),
[CrossRef]

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Taylor, J. R.

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Quantum Electron. (to be published).

Tomita, A.

K. Tai, A. Tomita, Appl. Phys. Lett. 48, 1033 (1986),
[CrossRef]

Tomlinson, W. J.

Tournois, P.

F. Gires, P. Tournois, Compt. Rend. 258, 6112 (1964).

Valdmanis, J. A.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

Wai, P. K. A.

Wood, D.

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
[CrossRef]

Appl. Phys, Lett. (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys, Lett. 40, 76 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

K. Tai, A. Tomita, Appl. Phys. Lett. 48, 1033 (1986),
[CrossRef]

Compt. Rend. (1)

F. Gires, P. Tournois, Compt. Rend. 258, 6112 (1964).

Electron. Lett. (1)

B. P. Nelson, J. Ainslie, D. Cooper, Electron. Lett. 21, 274 (1985).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B. J. Ainslie, C. R. Day, IEEE J. Lightwave Technol. LT-4, 967 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
[CrossRef]

Opt. Lett. (5)

Opt. News (1)

L. F. Mollenauer, Opt. News 12(5), 42 (1986).
[CrossRef]

Phys. Rev. Lett. (2)

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Proc. IEEE (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Other (1)

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Autocorrelation traces of pulses generated through soliton propagation in 19.5 m of single-mode optical fiber for powers of (a) 293 W (N = 8), (b) 469 W (N = 11), and (c) 587 W (N = 12).

Fig. 2
Fig. 2

Autocorrelation traces corresponding to Fig. 1, recorded using background-free technique to show the nonsoliton component of the compressed pulse; fs, femtoseconds.

Fig. 3
Fig. 3

Plot of N = 12 soliton pulse width versus normalized fiber length, where Z0 = 246 m is the calculated soliton period.

Fig. 4
Fig. 4

Recorded spectra for the high-order soliton N = 12 for (a) Z/Z0 = 0.079 and (b) Z/Z0 = 0.04.

Metrics