Abstract

I report the observation of continuous-wave laser oscillation in a Nd:YAG sphere. The spherical laser is excited by a dye laser that is focused to pump selectively certain regions of the sphere. With careful mode matching, single-frequency oscillation is obtained. The observed emission patterns agree well with the modes predicted by a classical treatment of a spherically symmetric resonator. These modes are described by products of spherical harmonics and Bessel functions, in contrast to the standard Gaussian-beam modes of a linear cavity.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  2. S. C. Hill, C. K. Rushforth, R. E. Benner, P. R. Conwell, Appl. Opt. 24, 2380 (1985), and references therein.
    [CrossRef] [PubMed]
  3. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  4. H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
    [CrossRef]
  5. S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
    [CrossRef]
  6. C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
    [CrossRef]
  7. See, for example, N. A. Kurnit, Proc. Soc. Photo-Opt. Instrum. Eng.288, Conference on Optics142 (1981), and references therein.
  8. A. G. Fox, T. Li, Bell Syst. Tech J. 40, 453, (1961).
  9. See, for example, E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
    [CrossRef]
  10. T. Baer, Laser Focus 22 (6), 82 (1986).
  11. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 554.
  12. W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939), p. 533.

1986

H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
[CrossRef]

S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
[CrossRef]

T. Baer, Laser Focus 22 (6), 82 (1986).

1985

1984

1977

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

1967

See, for example, E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

1961

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

A. G. Fox, T. Li, Bell Syst. Tech J. 40, 453, (1961).

Ashkin, A.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Baer, T.

T. Baer, Laser Focus 22 (6), 82 (1986).

Benner, R. E.

Bond, W. L.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Campillo, A. J.

H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
[CrossRef]

Chang, R. K.

Conwell, P. R.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Fox, A. G.

A. G. Fox, T. Li, Bell Syst. Tech J. 40, 453, (1961).

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Hill, S. C.

Huston, A. L.

H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
[CrossRef]

Justus, B. L.

H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Kurnit, N. A.

See, for example, N. A. Kurnit, Proc. Soc. Photo-Opt. Instrum. Eng.288, Conference on Optics142 (1981), and references therein.

Li, T.

A. G. Fox, T. Li, Bell Syst. Tech J. 40, 453, (1961).

Lin, H.-B.

H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
[CrossRef]

Long, M. B.

Post, E. J.

See, for example, E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Rushforth, C. K.

Smythe, W. R.

W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939), p. 533.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 554.

Tzeng, H.-M.

Wall, K. F.

Appl. Opt.

Bell Syst. Tech J.

A. G. Fox, T. Li, Bell Syst. Tech J. 40, 453, (1961).

J. Opt. Soc. Am. B

Laser Focus

T. Baer, Laser Focus 22 (6), 82 (1986).

Opt Lett.

H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt Lett. 10, 614 (1986).
[CrossRef]

Opt. Lett.

Phys. Rev.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Rev. Mod. Phys.

See, for example, E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Other

See, for example, N. A. Kurnit, Proc. Soc. Photo-Opt. Instrum. Eng.288, Conference on Optics142 (1981), and references therein.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 554.

W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939), p. 533.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Grazing-incidence and (b) prism-coupled pumping schemes for the SSL. In the grazing-incidence scheme the pump laser propagates with an internal angle near the critical angle. In the prism-coupled scheme the pump propagates within the sphere at incident angles greater than the critical angle and is trapped within the sphere. In both cases the population inversion is confined to an annular region. The dotted circle indicates the inner radius of the annular region excited by the pump laser.

Fig. 2
Fig. 2

External and internal ray diagrams for the SSL with grazing-incidence excitation. When viewed from within the lasing plane the coherent light emanates from points on the sphere determined by the tangents drawn from the observation point to the sphere. The dominant ray of the lasing mode propagates at an internal angle equal to the critical angle. The SSL also supports a counterpropagating ring-laser mode, which, for reasons of clarity, is not drawn in this figure.

Fig. 3
Fig. 3

Radial dependence of the intensity of the lasing mode for radial mode number n = 100. The maximum intensity is located at kr = 100. The intensity decreases as r−2 after reaching its maximum value. Modes with larger radial mode numbers have a similar functional dependence, with the maximum intensity radius given by expression (1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r max n / k ,
E ( θ ) [ sin ( θ ) ] n 1 .

Metrics