Abstract

Three-laser coherent anti-Stokes Raman scattering (CARS) was used to acquire simultaneously pure rotational and vibrational spectra from the nitrogen molecule. This technique has the potential for accurate temperature measurements over a wider temperature range than either vibrational or pure rotational CARS alone. Third-order susceptibilities for three-laser CARS are derived, and polarization effects are discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Barrett, Appl. Phys. Lett. 27, 722 (1976).
    [CrossRef]
  2. I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, Nature 276, 378 (1978).
    [CrossRef]
  3. C. M. Roland, W. A. Steele, J. Chem. Phys. 73, 5919 (1980).
    [CrossRef]
  4. L. P. Goss, J. W. Fleming, A. B. Harvey, Opt. Lett. 5, 345 (1980).
    [CrossRef] [PubMed]
  5. J. A. Shirley, R. J. Hall, A. C. Eckbreth, Opt. Lett. 5, 380 (1980).
    [CrossRef] [PubMed]
  6. D. V. Murphy, R. K. Chang, Opt. Lett. 6, 233 (1981).
    [CrossRef] [PubMed]
  7. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, Opt. Lett. 9, 341 (1984).
    [CrossRef] [PubMed]
  8. Th. Lasser, E. Magens, A. Leipertz, Opt. Lett. 10, 535 (1985).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, T. J. Anderson, Opt. Lett. 11, 496 (1986).
    [CrossRef] [PubMed]
  10. B. Dick, A. Gierulski, Appl. Phys. B 40, 1 (1986).
    [CrossRef]
  11. M. Aldén, P.-E. Bengtsson, H. Edner, Appl. Opt. 25, 4493 (1986).
    [CrossRef] [PubMed]
  12. L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
    [CrossRef]
  13. J. W. Nibler, G. V. Knighten, in Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), Vol. 11, p. 253.
    [CrossRef]
  14. A. Owyoung, Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).
  15. H. Lotem, R. T. Lynch, N. Bloembergen, Phys. Rev. A 14, 1748 (1976).
    [CrossRef]
  16. R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, Appl. Opt. 24, 2241 (1985).
    [CrossRef] [PubMed]
  17. R. L. Farrow, L. A. Rahn, J. Opt. Soc. Am. B 2, 903 (1985).
    [CrossRef]
  18. R. P. Lucht, Opt. Lett. 12, 78 (1987).
    [CrossRef] [PubMed]
  19. J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
    [CrossRef]
  20. R. E. Teets, paper presented at the 1985 International Laser Science Conference, Dallas, Texas, November 18– 22, 1985.

1987 (1)

1986 (3)

1985 (3)

1984 (1)

1981 (1)

1980 (3)

1979 (1)

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

1978 (1)

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, Nature 276, 378 (1978).
[CrossRef]

1976 (3)

J. J. Barrett, Appl. Phys. Lett. 27, 722 (1976).
[CrossRef]

H. Lotem, R. T. Lynch, N. Bloembergen, Phys. Rev. A 14, 1748 (1976).
[CrossRef]

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

Aldén, M.

Anderson, T. J.

Barrett, J. J.

J. J. Barrett, Appl. Phys. Lett. 27, 722 (1976).
[CrossRef]

Beattie, I. R.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, Nature 276, 378 (1978).
[CrossRef]

Bengtsson, P.-E.

Bloembergen, N.

H. Lotem, R. T. Lynch, N. Bloembergen, Phys. Rev. A 14, 1748 (1976).
[CrossRef]

Chang, R. K.

Clark, G. L.

Dick, B.

B. Dick, A. Gierulski, Appl. Phys. B 40, 1 (1986).
[CrossRef]

Eckbreth, A. C.

Edner, H.

Eesley, G. L.

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

Farrow, R. L.

Fleming, J. W.

Gierulski, A.

B. Dick, A. Gierulski, Appl. Phys. B 40, 1 (1986).
[CrossRef]

Gilson, T. R.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, Nature 276, 378 (1978).
[CrossRef]

Goss, L. P.

Greenhalgh, D. A.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, Nature 276, 378 (1978).
[CrossRef]

Hall, R. J.

Harvey, A. B.

Knighten, G. V.

J. W. Nibler, G. V. Knighten, in Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), Vol. 11, p. 253.
[CrossRef]

Lasser, Th.

Leipertz, A.

Levenson, M. D.

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

Lotem, H.

H. Lotem, R. T. Lynch, N. Bloembergen, Phys. Rev. A 14, 1748 (1976).
[CrossRef]

Lucht, R. P.

Lynch, R. T.

H. Lotem, R. T. Lynch, N. Bloembergen, Phys. Rev. A 14, 1748 (1976).
[CrossRef]

Magens, E.

Mattern, P. L.

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

Murphy, D. V.

Nibler, J. W.

J. W. Nibler, G. V. Knighten, in Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), Vol. 11, p. 253.
[CrossRef]

Owyoung, A.

A. Owyoung, Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

Palmer, R. E.

Rahn, L. A.

R. L. Farrow, L. A. Rahn, J. Opt. Soc. Am. B 2, 903 (1985).
[CrossRef]

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

Roland, C. M.

C. M. Roland, W. A. Steele, J. Chem. Phys. 73, 5919 (1980).
[CrossRef]

Shirley, J. A.

Snow, J. B.

Song, J. J.

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

Steele, W. A.

C. M. Roland, W. A. Steele, J. Chem. Phys. 73, 5919 (1980).
[CrossRef]

Teets, R. E.

R. E. Teets, paper presented at the 1985 International Laser Science Conference, Dallas, Texas, November 18– 22, 1985.

Zheng, J.

Zych, L. J.

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

B. Dick, A. Gierulski, Appl. Phys. B 40, 1 (1986).
[CrossRef]

Appl. Phys. Lett. (2)

J. J. Barrett, Appl. Phys. Lett. 27, 722 (1976).
[CrossRef]

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976).
[CrossRef]

J. Chem. Phys. (1)

C. M. Roland, W. A. Steele, J. Chem. Phys. 73, 5919 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, Nature 276, 378 (1978).
[CrossRef]

Opt. Commun. (1)

L. A. Rahn, L. J. Zych, P. L. Mattern, Opt. Commun. 30, 249 (1979).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (1)

H. Lotem, R. T. Lynch, N. Bloembergen, Phys. Rev. A 14, 1748 (1976).
[CrossRef]

Other (3)

R. E. Teets, paper presented at the 1985 International Laser Science Conference, Dallas, Texas, November 18– 22, 1985.

J. W. Nibler, G. V. Knighten, in Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), Vol. 11, p. 253.
[CrossRef]

A. Owyoung, Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-level schematic for the simultaneous generation of vibrational and pure rotational spectra using three-laser CARS.

Fig. 2
Fig. 2

Vibrational and pure rotational three-laser CARS spectrum obtained from pure nitrogen. The spectrum shown is the average of 120 laser shots. The pulse energies for the ω1, ωs, and ω2 beams were 10, 6, and 10 mJ, respectively. A neutral-density filter with a transmission of 0.01 was used in the CARS signal channel. The polarizations of the laser beams and the axis of the CARS polarization analyzer were parallel. The solid line shows the experimental data, and the dashed line is the theoretical fit.

Fig. 3
Fig. 3

Polarization scheme used for the three-laser CARS measurements. The angle θs between E1 and Es is 45°. The angle θ2 between E1 and E2 is 90°.

Fig. 4
Fig. 4

Vibrational and pure rotational three-laser CARS spectra obtained from pure nitrogen for three different angles θas of the CARS analyzer. The nominal values and best-fit values for θas were (a) 90°, (b) 0°, and (c) −45° and (a) 88°, (b) -5°, and (c) −48°, respectively. The pulse energies for the ω1, ωs, and ω2 beams were 10, 6, and 10 mJ, respectively. A neutral-density filter with a transmission of 0.01 was used in the CARS signal channel, and 120 laser shots were averaged. The polarization vector POL (θas, θ1, θ2, θs) is indicated.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E a s [ χ 1122 ( 3 ) ê 1 ( ê 2 ê s ) + χ 1212 ( 3 ) ê 2 ( ê 1 ê s ) + χ 1221 ( 3 ) ê s ( ê 1 ê 2 ) ] E 1 E s * E 2 ,
χ 1122 ( 3 ) = 1 24 [ σ + 2 a ( ω 2 ω s ) + b ( ω 1 ω s ) ] ,
χ 1212 ( 3 ) = 1 24 [ σ + 2 a ( ω 1 ω s ) + b ( ω 2 ω s ) ] ,
χ 1221 ( 3 ) = 1 24 [ σ + b ( ω 2 ω s ) + b ( ω 1 ω s ) ] ,
χ 1111 ( 3 ) = χ 1122 ( 3 ) + χ 1221 ( 3 ) + χ 1212 ( 3 ) ,
a ( ω k ω s ) = K υ J J [ ( a ) 2 δ J J 2 45 b J J ( γ ) 2 ] ,
b ( ω k ω s ) = K υ J J [ 2 15 b J J ( γ ) 2 ] ,
K υ J J = Δ N ( υ + 1 ) 2 μ ω 0 ( ω 0 ω k + ω s i Γ ) 1 ,
a ( ω k ω s ) = K J J [ 2 45 b J J ( γ ) 2 ] ,
b ( ω k ω s ) = K J J [ 2 15 b J J ( γ ) 2 ] ,
K J J = 1 [ N J ( 2 J + 1 ) ( 2 J + 1 ) N J ] × ( ω 0 ω k + ω s i Γ ) 1 ,
I as [ ( σ + 2 a 2 + b 1 ) cos θ as + ( σ + 2 a 1 + b 2 ) sin θ as ] 2 I 1 I s I 2 ,
I as [ ( σ + 2 a 2 ) cos θ as + ( σ + 2 a 1 ) sin θ as ] 2 I 1 I s I 2 ,

Metrics