Abstract

A low-cost and simple technique for encryption of two-dimensional patterns and shapes is suggested and demonstrated. The method is based on the superposition of random grids.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Diffie, M. E. Hellman, Proc IEEE 67, 397 (1979).
    [CrossRef]
  2. L. Glass, Nature 223, 578 (1969).
    [CrossRef] [PubMed]

1979 (1)

W. Diffie, M. E. Hellman, Proc IEEE 67, 397 (1979).
[CrossRef]

1969 (1)

L. Glass, Nature 223, 578 (1969).
[CrossRef] [PubMed]

Diffie, W.

W. Diffie, M. E. Hellman, Proc IEEE 67, 397 (1979).
[CrossRef]

Glass, L.

L. Glass, Nature 223, 578 (1969).
[CrossRef] [PubMed]

Hellman, M. E.

W. Diffie, M. E. Hellman, Proc IEEE 67, 397 (1979).
[CrossRef]

Nature (1)

L. Glass, Nature 223, 578 (1969).
[CrossRef] [PubMed]

Proc IEEE (1)

W. Diffie, M. E. Hellman, Proc IEEE 67, 397 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

A, Master grid; B, encoded grid; C, superposition of A and B.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = ½ ( x ) + ¼ ( 1 x y ) + 0 ( y ) , T = ¼ ( 1 + x y ) ;
0 x , y 1.
T i = g i / 2 K .
x i y i = 4 T i 1 = 2 g i / K 1 .

Metrics