Abstract

Surface plasmons on opposite sides of a thin metal film surrounded by identical dielectrics interact to form coupled surface plasmons (CSP's). Corrugation of the metal film permits interaction of the CSP's with the radiation field. We report the observation of optical emission from CSP's excited by the near-field coupling of molecules adjacent to a corrugated thin metal film embedded in photoresist.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
    [CrossRef]
  2. K. L. Kliewer, R. Fuchs, Phys. Rev. 144, 495 (1966).
    [CrossRef]
  3. M. Fukui, V. C. Y. So, R. Normandin, Phys. Status Solidi B 91, K61(1979).
    [CrossRef]
  4. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
    [CrossRef]
  5. G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
    [CrossRef]
  6. R. T. Deck, D. Sarid, J. Opt. Soc. Am. 72, 1613 (1982).
    [CrossRef]
  7. G. J. Kovacs, G. D. Scott, Can. J. Phys. 56, 1235 (1978).
    [CrossRef]
  8. Y. Kuwamura, M. Fukui, O. Tada, J. Phys. Soc. Jpn. 52, 2350 (1983).
    [CrossRef]
  9. A. E. Craig, G. A. Olson, D. Sarid, Opt. Lett. 8, 380 (1983).
    [CrossRef] [PubMed]
  10. J. C. Quail, J. G. Rako, H. J. Simon, Opt. Lett. 8, 377 (1983).
    [CrossRef] [PubMed]
  11. T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
    [CrossRef]
  12. W. H. Weber, C. F. Eagen, Opt. Lett. 4, 236 (1979).
    [CrossRef] [PubMed]
  13. I. Pockrand, A. Brillante, D. Mobius, Chem. Phys. Lett. 69, 499 (1980).
    [CrossRef]
  14. R. W. Gruhlke, W. R. Holland, D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
    [CrossRef] [PubMed]
  15. References 7–11 contain data collected by optical excitation at wavelength λ = 0.6328 μm only. The dispersion relation has been measured over a broader range in electron energy-loss experiments, but such measurements are limited by experimental accuracy near the light line as discussed in Ref. 11.
  16. J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  17. P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]

1986 (2)

R. W. Gruhlke, W. R. Holland, D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

1985 (1)

T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
[CrossRef]

1983 (3)

1982 (2)

R. T. Deck, D. Sarid, J. Opt. Soc. Am. 72, 1613 (1982).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

1981 (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

1980 (1)

I. Pockrand, A. Brillante, D. Mobius, Chem. Phys. Lett. 69, 499 (1980).
[CrossRef]

1979 (2)

M. Fukui, V. C. Y. So, R. Normandin, Phys. Status Solidi B 91, K61(1979).
[CrossRef]

W. H. Weber, C. F. Eagen, Opt. Lett. 4, 236 (1979).
[CrossRef] [PubMed]

1978 (1)

G. J. Kovacs, G. D. Scott, Can. J. Phys. 56, 1235 (1978).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1966 (1)

K. L. Kliewer, R. Fuchs, Phys. Rev. 144, 495 (1966).
[CrossRef]

1962 (1)

R. H. Ritchie, H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[CrossRef]

Arakawa, E. T.

T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
[CrossRef]

Brillante, A.

I. Pockrand, A. Brillante, D. Mobius, Chem. Phys. Lett. 69, 499 (1980).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Craig, A. E.

Deck, R. T.

Eagen, C. F.

Eldridge, H. B.

R. H. Ritchie, H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[CrossRef]

Fuchs, R.

K. L. Kliewer, R. Fuchs, Phys. Rev. 144, 495 (1966).
[CrossRef]

Fukui, M.

Y. Kuwamura, M. Fukui, O. Tada, J. Phys. Soc. Jpn. 52, 2350 (1983).
[CrossRef]

M. Fukui, V. C. Y. So, R. Normandin, Phys. Status Solidi B 91, K61(1979).
[CrossRef]

Goudonnet, J. P.

T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
[CrossRef]

Gruhlke, R. W.

R. W. Gruhlke, W. R. Holland, D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

Hall, D. G.

R. W. Gruhlke, W. R. Holland, D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Holland, W. R.

R. W. Gruhlke, W. R. Holland, D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

Inagaki, T.

T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kliewer, K. L.

K. L. Kliewer, R. Fuchs, Phys. Rev. 144, 495 (1966).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, G. D. Scott, Can. J. Phys. 56, 1235 (1978).
[CrossRef]

Kuwamura, Y.

Y. Kuwamura, M. Fukui, O. Tada, J. Phys. Soc. Jpn. 52, 2350 (1983).
[CrossRef]

Mobius, D.

I. Pockrand, A. Brillante, D. Mobius, Chem. Phys. Lett. 69, 499 (1980).
[CrossRef]

Motosuga, M.

T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
[CrossRef]

Normandin, R.

M. Fukui, V. C. Y. So, R. Normandin, Phys. Status Solidi B 91, K61(1979).
[CrossRef]

Olson, G. A.

Pockrand, I.

I. Pockrand, A. Brillante, D. Mobius, Chem. Phys. Lett. 69, 499 (1980).
[CrossRef]

Quail, J. C.

Rako, J. G.

Ritchie, R. H.

R. H. Ritchie, H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[CrossRef]

Sarid, D.

Scott, G. D.

G. J. Kovacs, G. D. Scott, Can. J. Phys. 56, 1235 (1978).
[CrossRef]

Simon, H. J.

So, V. C. Y.

M. Fukui, V. C. Y. So, R. Normandin, Phys. Status Solidi B 91, K61(1979).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Tada, O.

Y. Kuwamura, M. Fukui, O. Tada, J. Phys. Soc. Jpn. 52, 2350 (1983).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Weber, W. H.

Appl. Phys. Lett. (1)

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Can. J. Phys. (1)

G. J. Kovacs, G. D. Scott, Can. J. Phys. 56, 1235 (1978).
[CrossRef]

Chem. Phys. Lett. (1)

I. Pockrand, A. Brillante, D. Mobius, Chem. Phys. Lett. 69, 499 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Soc. Jpn. (1)

Y. Kuwamura, M. Fukui, O. Tada, J. Phys. Soc. Jpn. 52, 2350 (1983).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (2)

R. H. Ritchie, H. B. Eldridge, Phys. Rev. 126, 1935 (1962).
[CrossRef]

K. L. Kliewer, R. Fuchs, Phys. Rev. 144, 495 (1966).
[CrossRef]

Phys. Rev. B (3)

T. Inagaki, M. Motosuga, E. T. Arakawa, J. P. Goudonnet, Phys. Rev. B 32, 6238 (1985).
[CrossRef]

J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

R. W. Gruhlke, W. R. Holland, D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

M. Fukui, V. C. Y. So, R. Normandin, Phys. Status Solidi B 91, K61(1979).
[CrossRef]

Other (1)

References 7–11 contain data collected by optical excitation at wavelength λ = 0.6328 μm only. The dispersion relation has been measured over a broader range in electron energy-loss experiments, but such measurements are limited by experimental accuracy near the light line as discussed in Ref. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sample and experimental geometries.

Fig. 2
Fig. 2

Photographs of emitted CSP radiation, λ = 647 nm, from symmetric silver films, each with a different thickness h. The bright vertical band located to the left (right) and labeled 1 (s) in the top photograph is emitted from the longrange (short-range) mode, while the remaining less intense and sharper bands are emitted from waveguide modes of the photoresist layers. Top to bottom: h = 61, 43, 34 nm.

Fig. 3
Fig. 3

Angular distribution of light, λ = 850 nm, emitted from symmetric silver films, each with a different thickness h. Long-range (short-range) CSP radiation intensity peaks are located on the left (right).

Fig. 4
Fig. 4

Theoretical dispersion curves for CSP's supported by silver films embedded in photoresist (——) and for the single-interface surface plasmons (— —). Long-range (short-range) CSP curves are located above (below) the dashed curve. ● and ▲ denote λ versus kCSP experimental points for h = 24 and 43 nm, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k CSP = 2 π / Λ + ( 2 π / λ ) sin θ ,

Metrics