Abstract

Pulses of 37-psec duration are generated by a cw actively mode-locked Nd:YLF oscillator and subsequently amplified to 2.5 mJ in a cw-pumped Nd:YLF regenerative amplifier operating at a repetition rate of 500 Hz. In comparison, the same system refitted with Nd:YAG gain media produces longer pulses (∼80 psec) with lower energy (1 mJ).

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sizer, G. Mourou, R. R. Rice, Opt. Commun. 37, 207 (1981); andG. Mourou, U.S. Pat. No. 4,425,652 (January10, 1984).
    [CrossRef]
  2. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
    [CrossRef]
  3. E. J. Sharp, D. J. Horowitz, J. E. Miller, J. Appl. Phys. 44, 5399 (1973).
    [CrossRef]
  4. J. E. Murray, IEEE J. Quantum Electron. QE-19, 488 (1983).
    [CrossRef]
  5. T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
    [CrossRef]
  6. D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum, Electron. QE-6, 694 (1970).
    [CrossRef]
  7. H. Klann, J. Kuhl, D. von der Linde, Opt. Commun. 38, 390 (1981).
    [CrossRef]
  8. L N. Duling, T. Norris, T. Sizer, P. Bado, G. A. Mourou, J. Opt. Soc. Am. B 2, 616 (1985).
  9. W. Koechner, Solid-State Laser Engineering, Vol. 2 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1976).
  10. K. Shiraishi, F. Tajima, S. Kawakami, Opt. Lett. 11, 82 (1986).
    [CrossRef] [PubMed]
  11. P. Bado, J. S. Coe, “Nd:YLF: demonstration of a cw pumped actively mode-locked oscillator–regenerative amplifier source,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 88.

1986

1985

1983

J. E. Murray, IEEE J. Quantum Electron. QE-19, 488 (1983).
[CrossRef]

1982

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

1981

T. Sizer, G. Mourou, R. R. Rice, Opt. Commun. 37, 207 (1981); andG. Mourou, U.S. Pat. No. 4,425,652 (January10, 1984).
[CrossRef]

H. Klann, J. Kuhl, D. von der Linde, Opt. Commun. 38, 390 (1981).
[CrossRef]

1973

E. J. Sharp, D. J. Horowitz, J. E. Miller, J. Appl. Phys. 44, 5399 (1973).
[CrossRef]

1970

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum, Electron. QE-6, 694 (1970).
[CrossRef]

1969

L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Bado, P.

L N. Duling, T. Norris, T. Sizer, P. Bado, G. A. Mourou, J. Opt. Soc. Am. B 2, 616 (1985).

P. Bado, J. S. Coe, “Nd:YLF: demonstration of a cw pumped actively mode-locked oscillator–regenerative amplifier source,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 88.

Chicklis, E. P.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

Coe, J. S.

P. Bado, J. S. Coe, “Nd:YLF: demonstration of a cw pumped actively mode-locked oscillator–regenerative amplifier source,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 88.

Duling, L N.

Gabbe, D. R.

L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Grasso, R. J.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

Harmer, L.

L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Horowitz, D. J.

E. J. Sharp, D. J. Horowitz, J. E. Miller, J. Appl. Phys. 44, 5399 (1973).
[CrossRef]

Jenssen, H. P.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

Kawakami, S.

Klann, H.

H. Klann, J. Kuhl, D. von der Linde, Opt. Commun. 38, 390 (1981).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, Vol. 2 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1976).

Kuhl, J.

H. Klann, J. Kuhl, D. von der Linde, Opt. Commun. 38, 390 (1981).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum, Electron. QE-6, 694 (1970).
[CrossRef]

Linz, A.

L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Miller, J. E.

E. J. Sharp, D. J. Horowitz, J. E. Miller, J. Appl. Phys. 44, 5399 (1973).
[CrossRef]

Mourou, G.

T. Sizer, G. Mourou, R. R. Rice, Opt. Commun. 37, 207 (1981); andG. Mourou, U.S. Pat. No. 4,425,652 (January10, 1984).
[CrossRef]

Mourou, G. A.

Murray, J. E.

J. E. Murray, IEEE J. Quantum Electron. QE-19, 488 (1983).
[CrossRef]

Norris, T.

Pollak, T. M.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

Rice, R. R.

T. Sizer, G. Mourou, R. R. Rice, Opt. Commun. 37, 207 (1981); andG. Mourou, U.S. Pat. No. 4,425,652 (January10, 1984).
[CrossRef]

Sharp, E. J.

E. J. Sharp, D. J. Horowitz, J. E. Miller, J. Appl. Phys. 44, 5399 (1973).
[CrossRef]

Shiraishi, K.

Siegman, A. E.

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum, Electron. QE-6, 694 (1970).
[CrossRef]

Sizer, T.

L N. Duling, T. Norris, T. Sizer, P. Bado, G. A. Mourou, J. Opt. Soc. Am. B 2, 616 (1985).

T. Sizer, G. Mourou, R. R. Rice, Opt. Commun. 37, 207 (1981); andG. Mourou, U.S. Pat. No. 4,425,652 (January10, 1984).
[CrossRef]

Tajima, F.

von der Linde, D.

H. Klann, J. Kuhl, D. von der Linde, Opt. Commun. 38, 390 (1981).
[CrossRef]

Wing, W. F.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

IEEE J. Quantum Electron.

J. E. Murray, IEEE J. Quantum Electron. QE-19, 488 (1983).
[CrossRef]

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, H. P. Jenssen, IEEE J. Quantum Electron. QE-18, 159 (1982).
[CrossRef]

IEEE J. Quantum, Electron.

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum, Electron. QE-6, 694 (1970).
[CrossRef]

J. Appl. Phys.

E. J. Sharp, D. J. Horowitz, J. E. Miller, J. Appl. Phys. 44, 5399 (1973).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Opt. Commun.

T. Sizer, G. Mourou, R. R. Rice, Opt. Commun. 37, 207 (1981); andG. Mourou, U.S. Pat. No. 4,425,652 (January10, 1984).
[CrossRef]

H. Klann, J. Kuhl, D. von der Linde, Opt. Commun. 38, 390 (1981).
[CrossRef]

Opt. Lett.

Other

W. Koechner, Solid-State Laser Engineering, Vol. 2 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1976).

P. Bado, J. S. Coe, “Nd:YLF: demonstration of a cw pumped actively mode-locked oscillator–regenerative amplifier source,” in Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 88.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

YLF offers the correct center wavelength for amplification and the potential for short mode-locked pulses.

Fig. 2
Fig. 2

Overall system layout: dpd, differential phase detector; amp, radio-frequency amplifier.

Fig. 3
Fig. 3

Regenerative amplifier timing sequence: P, polarizer; QW, quarter-wave plate; PC, Pockels cell; GW, uncoated glass wedge. (A) Regenerative amplifier layout. (B) Before injection, the input pulses pass twice through the gain medium and leave the cavity before any significant amount of energy is extracted. (C) At injection time, a voltage (V = λ/4) is abruptly applied to the Pockels cell. The one pulse in transit between the Pockels cell and the opposite back mirror is trapped and regeneratively amplified. (D) After amplification, the Pockels-cell voltage is boosted to λ/2, and the pulse is cavity dumped.

Fig. 4
Fig. 4

Regenerative amplifier: average power and energy per pulse as a function of the repetition rate.

Metrics