Abstract

A novel fiber-optic polarimetric configuration for a magnetometer utilizing the Faraday effect is described. The system is operated in a closed-loop mode using magneto-optic feedback through a simple current-driven solenoid to maintain the azimuth of the optical output from the polarimeter constant. In this mode of operation scale-factor errors due to changes in the Verdet constant of the fiber are effectively eliminated. The minimum detectable current was less than 1 mA, with linear operation up to several amperes. A multiplexed system was also demonstrated, with potential application as a multiaccess noninvasive data ring.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, Elect. Power Appl. 2, 120 (1979).
    [CrossRef]
  2. A. M. Smith, Opt. Laser Technol. 12, 25 (1980).
    [CrossRef]
  3. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  4. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, New York, 1975).
  5. S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 43, 768 (1979).
    [CrossRef]

1980 (1)

A. M. Smith, Opt. Laser Technol. 12, 25 (1980).
[CrossRef]

1979 (2)

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 43, 768 (1979).
[CrossRef]

A. J. Rogers, Elect. Power Appl. 2, 120 (1979).
[CrossRef]

1978 (1)

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, New York, 1975).

Rashleigh, S. C.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 43, 768 (1979).
[CrossRef]

Rogers, A. J.

A. J. Rogers, Elect. Power Appl. 2, 120 (1979).
[CrossRef]

Smith, A. M.

A. M. Smith, Opt. Laser Technol. 12, 25 (1980).
[CrossRef]

A. M. Smith, Appl. Opt. 17, 52 (1978).
[CrossRef] [PubMed]

Ulrich, R.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 43, 768 (1979).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 43, 768 (1979).
[CrossRef]

Elect. Power Appl. (1)

A. J. Rogers, Elect. Power Appl. 2, 120 (1979).
[CrossRef]

Opt. Laser Technol. (1)

A. M. Smith, Opt. Laser Technol. 12, 25 (1980).
[CrossRef]

Other (1)

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement: LD, laser diode (790 nm); P, polarizer; l, lens; BS, beam splitter; A1 and A2, analyzers; PD1 and PD2, photodiodes; S1 and S2, signal solenoids; F, feedback solenoid.

Fig. 2
Fig. 2

(A) Variation of the signal solenoid current and the servo feedback current in time. Applied signal frequency was 400 Hz, applied signal current was 0.5 A rms, and feedback signal current was 0.6 A rms. (B) Superimposed photodiode outputs with the servo locked and unlocked for the same signal as in (A).

Fig. 3
Fig. 3

(A) Frequency spectrum of servo output with two applied signals: 280-Hz signal of 280 mA applied to the 4000-turn coil and 417.5-Hz signal of 220 mA applied to the 4200-turn coil. (B) As in (A) but-with both signal levels at 1 mA.

Fig. 4
Fig. 4

Variation of output signals with two input signals at 280 and 417.5 Hz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 0 l V H · d l ,
ϕ = V N w I ,
I D 1 + cos 2 ( ϕ + θ ) ,
i 1 = k 1 [ 1 + cos 2 ( ϕ + θ 0 ) ] ,
i 2 = k 2 [ 1 - cos 2 ( ϕ + θ 0 ) ] ,
i 0 cos 2 ( ϕ + θ 0 ) .

Metrics