Abstract

Simple expressions for the coupling between the LP01 and LP11 modes of a two-mode optical fiber with a periodic microbending structure are developed. Implementation of the microbend structure using a flexural acoustic wave is described. The dependences of the acoustic frequency and power requirements on the pertinent fiber parameters are presented.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, IEEE J. Lightwave Technol. LT-2, 617 (1984).
    [CrossRef]
  2. J. N. Blake, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 177 (1986).
    [CrossRef] [PubMed]
  3. B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef] [PubMed]
  4. A. Love, A Treatise On The Mathematical Theory Of Elasticity (Dover, New York, 1944).
  5. H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode fibers” (submitted to IEEE J. Lightwave Technol.).
  6. W. C. Elmore, M. A. Heald, Physics of Waves (Dover, New York, 1985).

1986

1984

H. F. Taylor, IEEE J. Lightwave Technol. LT-2, 617 (1984).
[CrossRef]

Blake, J. N.

J. N. Blake, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 177 (1986).
[CrossRef] [PubMed]

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode fibers” (submitted to IEEE J. Lightwave Technol.).

Elmore, W. C.

W. C. Elmore, M. A. Heald, Physics of Waves (Dover, New York, 1985).

Engan, H. E.

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode fibers” (submitted to IEEE J. Lightwave Technol.).

Heald, M. A.

W. C. Elmore, M. A. Heald, Physics of Waves (Dover, New York, 1985).

Kim, B. Y.

J. N. Blake, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 177 (1986).
[CrossRef] [PubMed]

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode fibers” (submitted to IEEE J. Lightwave Technol.).

Love, A.

A. Love, A Treatise On The Mathematical Theory Of Elasticity (Dover, New York, 1944).

Shaw, H. J.

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

J. N. Blake, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 177 (1986).
[CrossRef] [PubMed]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode fibers” (submitted to IEEE J. Lightwave Technol.).

Taylor, H. F.

H. F. Taylor, IEEE J. Lightwave Technol. LT-2, 617 (1984).
[CrossRef]

IEEE J. Lightwave Technol.

H. F. Taylor, IEEE J. Lightwave Technol. LT-2, 617 (1984).
[CrossRef]

Opt. Lett.

Other

A. Love, A Treatise On The Mathematical Theory Of Elasticity (Dover, New York, 1944).

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode fibers” (submitted to IEEE J. Lightwave Technol.).

W. C. Elmore, M. A. Heald, Physics of Waves (Dover, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of fiber subject to periodic microbending.

Fig. 2
Fig. 2

Normalized LP01–LP11 coupling coefficient versus V number for a bent two-mode fiber.

Fig. 3
Fig. 3

Normalized dispersion of the fundamental flexural mode on a cylindrical silica glass rod. λa, acoustic wavelength; fa, acoustic frequency; R, rod radius; ct, bulk shear-wave velocity.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I overlap = j κ = E 0 ( r ) exp [ j 2 π n λ ( 1 - χ ) r θ cos ϕ ] × E 1 ( r , ϕ ) r d r d ϕ ,
κ = 2 π 2 n ( 1 - χ ) θ λ E 0 ( r ) E 1 ( r ) r 2 d r .
κ = [ H ( V ) / Δ θ ] ,
L B = 2 π a ( 2 / Δ ) 1 / 2 f ( V ) ,
κ δ / 2 a ,
λ a = ( π R c ext / f a ) 1 / 2 ,
L B = 8 π 2 a 2 n [ f ( V ) / V λ ] .
P = 2 π 3 ρ v g ( f a R ) 2 ( δ / 2 ) 2 ,

Metrics