Abstract

A coherent laser radar system operating at the 1.06-μm Nd:YAG laser wavelength has been built and operated. A laser-diode-pumped monolithic ring laser served as the master oscillator. A single flash-lamp-pumped zigzag slab amplified the oscillator output to a power of 2.3 kW. Single-mode optical fiber was used to collect and mix the return signal with the local-oscillator output. Signals from clouds at a range of 2.7 km and from atmospheric aerosols at a range of 600 m were detected.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
    [CrossRef]
  2. I. Goldstein, A. Chabot, IEEE J. Quantum Electron. QE-2, 519 (1966).
    [CrossRef]
  3. T. J. Kane, B. Zhou, R. L. Byer, Appl. Opt. 23, 2477 (1984).
    [CrossRef] [PubMed]
  4. R. T. Menzies, Appl. Opt. 25, 2546 (1986).
    [CrossRef] [PubMed]
  5. T. J. Kane, Ph. D. dissertation (Stanford University, Stanford, Calif., 1986).
  6. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  7. T. J. Kane, A. C. Nillson, R. L. Byer, Opt. Lett. 12, 175 (1987).
    [CrossRef] [PubMed]
  8. T. J. Kane, W. J. Kozlovsky, R. L. Byer, Opt. Lett. 11, 216 (1986).
    [CrossRef] [PubMed]
  9. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).
    [CrossRef] [PubMed]
  10. W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).
  11. A. E. Siegman, Appl. Opt. 5, 1588 (1966).
    [CrossRef] [PubMed]
  12. R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 280 (1980).
    [CrossRef]

1987

1986

1985

1984

W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).

T. J. Kane, B. Zhou, R. L. Byer, Appl. Opt. 23, 2477 (1984).
[CrossRef] [PubMed]

1980

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 280 (1980).
[CrossRef]

1966

I. Goldstein, A. Chabot, IEEE J. Quantum Electron. QE-2, 519 (1966).
[CrossRef]

A. E. Siegman, Appl. Opt. 5, 1588 (1966).
[CrossRef] [PubMed]

1963

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

Bergh, R. A.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 280 (1980).
[CrossRef]

Biernson, G.

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

Burnham, R. D.

W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).

Byer, R. L.

Chabot, A.

I. Goldstein, A. Chabot, IEEE J. Quantum Electron. QE-2, 519 (1966).
[CrossRef]

Dixon, G. J.

Esherick, P.

Goldstein, I.

I. Goldstein, A. Chabot, IEEE J. Quantum Electron. QE-2, 519 (1966).
[CrossRef]

Hadley, G. R.

Kane, T. J.

Kotler, G.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 280 (1980).
[CrossRef]

Kozlovsky, W. J.

Lucy, R. F.

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

Menzies, R. T.

Nillson, A. C.

Owyoung, A.

Paoli, T. L.

W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).

Rahn, L. A.

Schmitt, R. L.

Scifres, D. R.

W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).

Shaw, H. J.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 280 (1980).
[CrossRef]

Siegman, A. E.

Streifer, W.

W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).

Zhou, B.

Appl. Opt.

Electron. Lett.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 280 (1980).
[CrossRef]

IEEE J. Quantum Electron.

I. Goldstein, A. Chabot, IEEE J. Quantum Electron. QE-2, 519 (1966).
[CrossRef]

Laser Focus

W. Streifer, R. D. Burnham, T. L. Paoli, D. R. Scifres, Laser Focus 20(6), 100 (1984).

Opt. Lett.

Proc. IEEE

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

Other

T. J. Kane, Ph. D. dissertation (Stanford University, Stanford, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Block diagram of one-oscillator coherent laser radar system. A single-oscillator system uses an acousto-optic modulator to provide the intermediate frequency Δf. This frequency is limited to well under 1 GHz. (b) Block diagram of two-oscillator radar system. The two oscillators are held at a constant frequency difference, with the frequency difference or intermediate frequency Δf variable up to 100 GHz.

Fig. 2
Fig. 2

Spectrum analyzer trace of beat signal between diode-pumped ring oscillator and diode-pumped rod oscillator shows combined linewidth of 3 kHz. Sweep time was 10 msec.

Fig. 3
Fig. 3

Return signal from clouds at 2.7 km. (a) Transmitter beam blocked, no signal detected; (b) beam transmitted, signal detected.

Fig. 4
Fig. 4

Return signal from aerosols at 600 m. (a) Transmitter beam blocked; (b) beam transmitted.

Metrics