Abstract

We examine the propagation of solitons in the two linearly polarized modes of a birefringent fiber. The behavior of single solitons is similar to that of continuous waves, and the nonlinear effects make the fast mode unstable when the beat length between the modes is long. Even with the instability, nondispersive pulses can still propagate. High-order solitons break up and can transfer most of the energy into a single, highly compressed soliton.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
    [Crossref]
  2. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [Crossref]
  3. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 146 (1973).
  4. V. E. Zakarov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  5. B. Crosignani, A. Cutolo, P. Di Porto, J. Opt. Soc. Am. 72, 1136 (1982).
    [Crossref]
  6. C. R. Menyuk, Science Applications International Corporation, 1710 Goodridge Drive, McLean, Va. 22102 (personal communication).
  7. P. D. Maker, R. W. Terhune, Phys. Rev. A 137, 801 (1965).
  8. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [Crossref]
  9. B. Daino, G. Gregori, S. Wabnitz, Opt. Lett. 11, 42 (1986).
    [Crossref] [PubMed]
  10. K. J. Blow, D. Wood, Opt. Commun. 58, 349 (1986).
    [Crossref]
  11. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
    [Crossref] [PubMed]

1986 (3)

1985 (1)

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

1983 (1)

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[Crossref]

1982 (1)

1973 (2)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 146 (1973).

1972 (1)

V. E. Zakarov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

1965 (1)

P. D. Maker, R. W. Terhune, Phys. Rev. A 137, 801 (1965).

Blow, K. J.

K. J. Blow, D. Wood, Opt. Commun. 58, 349 (1986).
[Crossref]

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[Crossref]

Chen, H. H.

Crosignani, B.

Cutolo, A.

Daino, B.

Di Porto, P.

Doran, N. J.

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[Crossref]

Gregori, G.

Hasegawa, A.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 146 (1973).

Lee, Y. C.

Maker, P. D.

P. D. Maker, R. W. Terhune, Phys. Rev. A 137, 801 (1965).

Menyuk, C. R.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
[Crossref] [PubMed]

C. R. Menyuk, Science Applications International Corporation, 1710 Goodridge Drive, McLean, Va. 22102 (personal communication).

Shabat, A. B.

V. E. Zakarov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 146 (1973).

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Terhune, R. W.

P. D. Maker, R. W. Terhune, Phys. Rev. A 137, 801 (1965).

Wabnitz, S.

Wai, P. K. A.

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

Wood, D.

K. J. Blow, D. Wood, Opt. Commun. 58, 349 (1986).
[Crossref]

Zakarov, V. E.

V. E. Zakarov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Appl. Phys. Lett. (3)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 146 (1973).

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

K. J. Blow, D. Wood, Opt. Commun. 58, 349 (1986).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

P. D. Maker, R. W. Terhune, Phys. Rev. A 137, 801 (1965).

Sov. Phys. JETP (1)

V. E. Zakarov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Other (1)

C. R. Menyuk, Science Applications International Corporation, 1710 Goodridge Drive, McLean, Va. 22102 (personal communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Perspective plots of pulse intensity in (a) the fast mode, U(z, t), and (b) the slow mode, V(z, t), for κ = 0.1, σ = 0.5, and an initial pulse of sech(t) close to the fast mode.

Fig. 2
Fig. 2

Perspective plots of pulse intensity in (a) the fast mode, U(z, t), and (b) the slow mode, V(z, t), for κ = 1.0, σ = 0.5, and an initial pulse of 2 sech(t) close to the fast mode.

Fig. 3
Fig. 3

Perspective plots of pulse intensity in (a) the fast mode, U(z, t), and (b) the slow mode, V(z, t), for κ = 1.0, σ = 0.5, and an initial pulse of 3 sech(t) close to the fast mode.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i U / z = β 2 U / t 2 + P ( U 2 + V 2 ) U + Q ( V 2 U * × exp [ 4 i κ ( z - z 0 ) ] - V 2 U ) , i V / z = β 2 V / t 2 + P ( U 2 + V 2 ) V + Q ( U 2 V * × exp [ - 4 i κ ( z - z 0 ) ] - U 2 V ) ,
A ( z , t ) = Q 1 / 2 { U exp [ - i κ ( z - z 0 ) ] + i V exp [ + i κ ( z - z 0 ) ] } , B ( z , t ) = Q 1 / 2 { U exp [ - i κ ( z - z 0 ) ] - i V exp [ + i κ ( z - z 0 ) ] } .
i A z = 2 A t 2 + κ B + [ σ A 2 + ( σ + 1 ) B 2 ] A , i B z = 2 B t 2 + κ A + [ σ B 2 + ( σ + 1 ) A 2 ] B ,

Metrics