Abstract

An optical evaluation technique is described that is suitable for determining the positions and magnitudes of reflection sites within miniature optical assemblies. This method utilizes the coherence effects exhibited by a broadband optical source and is referred to as optical coherence-domain reflectometry. Background theory is given, and experimental results have demonstrated a resolution of 10 μm with an optical dynamic range of more than 100 dB.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Kingsley, D. E. N. Davies, Electron. Lett. 21, 434 (1985).
    [CrossRef]
  2. R. O. Claus, B. S. Jackson, K. D. Bennett, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 243 (1985).
  3. G. Economou, R. C. Youngquist, D. E. N. Davies, “Limitations and noise in interferometric systems using frequency ramped single-mode diode lasers,” J. Lightwave Technol. (to be published).
  4. “Method and apparatus for detecting reflection sites,” provisional patent application.
  5. S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, presented at the First International Conference on Optical Fiber Sensors, London, 1983.
  6. Th. Bossellmann, R. Ulrich, presented at the Second International Conference on Optical Fiber Sensors, Stuttgart, 1984.
  7. G. Beheim, Appl. Opt. 24, 2335 (1985).
    [CrossRef] [PubMed]
  8. K. Takada, J. Noda, S. Nakajima, presented at the Fourth International Conference on Optical Fiber Sensors, Tokyo, 1986.
  9. R. H. Wentworth, “Theoretical noise performance of coherence multiplex interferometric sensors,” submitted to J. Lightwave Technol.
  10. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  11. D. M. Fye, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), pp. 12–14.

1985 (3)

S. A. Kingsley, D. E. N. Davies, Electron. Lett. 21, 434 (1985).
[CrossRef]

R. O. Claus, B. S. Jackson, K. D. Bennett, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 243 (1985).

G. Beheim, Appl. Opt. 24, 2335 (1985).
[CrossRef] [PubMed]

Al-Chalabi, S. A.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, presented at the First International Conference on Optical Fiber Sensors, London, 1983.

Beheim, G.

Bennett, K. D.

R. O. Claus, B. S. Jackson, K. D. Bennett, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 243 (1985).

Bossellmann, Th.

Th. Bossellmann, R. Ulrich, presented at the Second International Conference on Optical Fiber Sensors, Stuttgart, 1984.

Claus, R. O.

R. O. Claus, B. S. Jackson, K. D. Bennett, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 243 (1985).

Culshaw, B.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, presented at the First International Conference on Optical Fiber Sensors, London, 1983.

Davies, D. E. N.

S. A. Kingsley, D. E. N. Davies, Electron. Lett. 21, 434 (1985).
[CrossRef]

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, presented at the First International Conference on Optical Fiber Sensors, London, 1983.

G. Economou, R. C. Youngquist, D. E. N. Davies, “Limitations and noise in interferometric systems using frequency ramped single-mode diode lasers,” J. Lightwave Technol. (to be published).

Economou, G.

G. Economou, R. C. Youngquist, D. E. N. Davies, “Limitations and noise in interferometric systems using frequency ramped single-mode diode lasers,” J. Lightwave Technol. (to be published).

Fye, D. M.

D. M. Fye, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), pp. 12–14.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Jackson, B. S.

R. O. Claus, B. S. Jackson, K. D. Bennett, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 243 (1985).

Kingsley, S. A.

S. A. Kingsley, D. E. N. Davies, Electron. Lett. 21, 434 (1985).
[CrossRef]

Nakajima, S.

K. Takada, J. Noda, S. Nakajima, presented at the Fourth International Conference on Optical Fiber Sensors, Tokyo, 1986.

Noda, J.

K. Takada, J. Noda, S. Nakajima, presented at the Fourth International Conference on Optical Fiber Sensors, Tokyo, 1986.

Takada, K.

K. Takada, J. Noda, S. Nakajima, presented at the Fourth International Conference on Optical Fiber Sensors, Tokyo, 1986.

Ulrich, R.

Th. Bossellmann, R. Ulrich, presented at the Second International Conference on Optical Fiber Sensors, Stuttgart, 1984.

Wentworth, R. H.

R. H. Wentworth, “Theoretical noise performance of coherence multiplex interferometric sensors,” submitted to J. Lightwave Technol.

Youngquist, R. C.

G. Economou, R. C. Youngquist, D. E. N. Davies, “Limitations and noise in interferometric systems using frequency ramped single-mode diode lasers,” J. Lightwave Technol. (to be published).

Appl. Opt. (1)

Electron. Lett. (1)

S. A. Kingsley, D. E. N. Davies, Electron. Lett. 21, 434 (1985).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. O. Claus, B. S. Jackson, K. D. Bennett, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 243 (1985).

Other (8)

G. Economou, R. C. Youngquist, D. E. N. Davies, “Limitations and noise in interferometric systems using frequency ramped single-mode diode lasers,” J. Lightwave Technol. (to be published).

“Method and apparatus for detecting reflection sites,” provisional patent application.

S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, presented at the First International Conference on Optical Fiber Sensors, London, 1983.

Th. Bossellmann, R. Ulrich, presented at the Second International Conference on Optical Fiber Sensors, Stuttgart, 1984.

K. Takada, J. Noda, S. Nakajima, presented at the Fourth International Conference on Optical Fiber Sensors, Tokyo, 1986.

R. H. Wentworth, “Theoretical noise performance of coherence multiplex interferometric sensors,” submitted to J. Lightwave Technol.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

D. M. Fye, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), pp. 12–14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental system used to demonstrate the OCDR technique. A translating mirror is scanned to locate fringes corresponding to reflection sites within the DUE. BS, beam splitter; DET, detector.

Fig. 2
Fig. 2

Plots of the coherence envelope of the emitted light from the laser diode driven with injection currents of 45 mA (dots) and 70 mA (crosses) (theshold is at 90 mA). These data were taken by replacing the DUE with a mirror to form a scanning Michelson interferometer. The FWHM of the main peak is 10 μm, and the resulting SNR is more than 100 dB.

Fig. 3
Fig. 3

The reflection profile of a 1-mm-thick glass slide measured using the OCDR approach. The two largest peaks are the front and back reflections, and the other, smaller, peaks are the multiple internal reflections. The smallest peak corresponds to 1 fW of reflected optical power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V ( τ , t ) = A | α M u [ t - τ M - Δ τ M sin ( 2 π f t + ϕ ) ] + i = 1 N α i u ( t - τ i ) | 2 f ,
V ( τ , t ) = 2 A i = 1 N α M α i Re u [ t - τ M - Δ τ M × sin ( 2 π f t + ϕ ) ] u * ( t - τ i ) f , V ( τ , t ) = 2 A i = 1 N α M α i Re { Γ [ τ M - τ i + Δ τ M × sin ( 2 π f t + ϕ ) ] f } ,
V ( τ , t ) 2 A i = 1 N α M α i Γ ( τ M - τ i ) × cos [ 2 π ν ¯ Δ τ M sin ( 2 π f t + ϕ ) + ϕ × ( τ M - τ i ) ] f ,

Metrics