Abstract

A bare metallic grating illuminated by a plane, S-polarized electromagnetic wave can completely absorb one of the diffracted orders. These strong absorptions have been reported to be accompanied by two different types of behavior. Here we calculate, by means of an exact differential method, the phase versus angle-of-incidence curves for cycloidal metallic gratings with different groove-depth-to-period ratios. We show that an algorithm based on the electromagnetic theory of gratings can account for the experimentally observed behavior in the vicinity of a resonant anomaly. We also show that this type of study provides additional information about the position of the zeros of the scattering matrix in the complex plane.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley, D. Maystre, Opt. Commun. 19, 431 (1976).
    [CrossRef]
  2. J. M. Simon, M. C. Simon, M. T. Garea, “Phase behavior in Wood anomalies”, Appl. Opt. (to he published).
    [PubMed]
  3. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, New York, 1980).
    [CrossRef]
  4. G. Hass, “Mirror coatings,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, New York, 1966).
  5. R. A. Depine, J. M. Simon, Opt. Acta 30, 1273 (1983).
    [CrossRef]

1983 (1)

R. A. Depine, J. M. Simon, Opt. Acta 30, 1273 (1983).
[CrossRef]

1976 (1)

M. C. Hutley, D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

Depine, R. A.

R. A. Depine, J. M. Simon, Opt. Acta 30, 1273 (1983).
[CrossRef]

Garea, M. T.

J. M. Simon, M. C. Simon, M. T. Garea, “Phase behavior in Wood anomalies”, Appl. Opt. (to he published).
[PubMed]

Hass, G.

G. Hass, “Mirror coatings,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, New York, 1966).

Hutley, M. C.

M. C. Hutley, D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

Maystre, D.

M. C. Hutley, D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

Nevière, M.

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, New York, 1980).
[CrossRef]

Simon, J. M.

R. A. Depine, J. M. Simon, Opt. Acta 30, 1273 (1983).
[CrossRef]

J. M. Simon, M. C. Simon, M. T. Garea, “Phase behavior in Wood anomalies”, Appl. Opt. (to he published).
[PubMed]

Simon, M. C.

J. M. Simon, M. C. Simon, M. T. Garea, “Phase behavior in Wood anomalies”, Appl. Opt. (to he published).
[PubMed]

Opt. Acta (1)

R. A. Depine, J. M. Simon, Opt. Acta 30, 1273 (1983).
[CrossRef]

Opt. Commun. (1)

M. C. Hutley, D. Maystre, Opt. Commun. 19, 431 (1976).
[CrossRef]

Other (3)

J. M. Simon, M. C. Simon, M. T. Garea, “Phase behavior in Wood anomalies”, Appl. Opt. (to he published).
[PubMed]

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, New York, 1980).
[CrossRef]

G. Hass, “Mirror coatings,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Presentation of the grating problem.

Fig. 2
Fig. 2

Phase versus angle of incidence for the zero order of the field diffracted by cycloidal gratings with h/d = 0.09, 0.096, 0.097, 0.12. The refractive index is n = 0.2 + i2.9 and λ/d = 0.5.

Fig. 3
Fig. 3

Efficiency versus angle of incidence for the zero order of the field diffracted by cycloidal gratings with h/d = 0.09, 0.096, 0.097, 0.12. The refractive index is n = 0.2 + i2.9 and λ/d = 0.5. The minimum computed efficiencies were 2.9 × 10−3 for h/d = 0.09, 8.7 × 10−6 for h/d = 0.096, 4.6 × 10−5 for h/d = 0.097, and 1.9 × 10−2 for h/d = 0.12.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H d = m = - B m exp [ i ( α m x + β m y - w t ) ] e ^ z ,
B 0 ( λ / d , θ , h / d , n ) = W ( λ / d , θ , h / d , n ) [ ( Z - Z 0 ) / ( Z - Z p ) ] .
B 0 ( Z , h / d ) = W ( Z , h / d ) [ ( Z - Z 0 ) / ( Z - Z p ) ] ,
B 0 ( Z , h / d ) = B 0 ( Z , h / d ) exp [ i φ ( Z , h / d ) ] ,
( Z , h / d ) = arctan [ ( Z - Z r ) ( P i - Z i ) ( Z - Z r ) 2 + P i Z i ] + K ,

Metrics