Abstract

We report on the operation of the double phase-conjugate mirror (DPCM). Two inputs to opposite sides of a photorefractive barium titanate crystal, which may carry different spatial images, are shown to pump the same four-wave mixing process mutually and are self-refracted without any external or internal crystal surface. This results in the phase-conjugate reproduction of the two images simultaneously. This device is analyzed theoretically, and applications in image processing, interferometry, and rotation sensing are discussed. We also demonstrate the operation of a ring laser, using the DPCM, as well as a photorefractive resonator with two facing DPCM’s that can support spatial information in its oscillations.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinberg, R. W. Hellwarth, Opt. Lett. 5, 519 (1980).
    [CrossRef] [PubMed]
  2. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  3. K. R. MacDonald, J. Feinberg, J. Opt. Soc. Am. 73, 548 (1983).
    [CrossRef]
  4. B. Fischer, Opt. Lett. 11, 236 (1986).
    [CrossRef] [PubMed]
  5. This ruled out a possible backscattering mechanism such as that discussed by T. Y. Chang, R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
    [CrossRef] [PubMed]
  6. M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
    [CrossRef]
  7. The DPCM can operate even with inputs derived from separate lasers, with the maximum allowable difference in wavelength between the two lasers dictated by the Bragg selectivity of the thick gratings. This is demonstrated in a subsequent work by S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986).
    [CrossRef] [PubMed]
  8. Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.
  9. B. Fischer, S. Sternklar, Appl. Phys. Lett. 47, 1 (1985).
    [CrossRef]
  10. B. Fischer, S. Sternklar, S. Weiss, Appl. Phys. Lett. 48, 1567 (1986).
    [CrossRef]
  11. D. Z. Anderson, Opt. Lett. 11, (1986); B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, Opt. Lett. 11, 118 (1986); A. Yariv, S. K. Kwong, Opt. Lett. 11, 186 (1986).
    [CrossRef] [PubMed]
  12. O. Ikeda, T. Sato, H. Kojima, J. Opt. Soc. Am. A 2, 1863 (1985); J. Opt. Soc. Am. A 3, 645 (1986).
    [CrossRef]
  13. R. H. Boucher, Proc. Soc. Photo-Opt. Instrum. Eng. 231, 130 (1980).

1986 (4)

1985 (4)

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

1983 (1)

1980 (2)

R. H. Boucher, Proc. Soc. Photo-Opt. Instrum. Eng. 231, 130 (1980).

J. Feinberg, R. W. Hellwarth, Opt. Lett. 5, 519 (1980).
[CrossRef] [PubMed]

Anderson, D. Z.

D. Z. Anderson, Opt. Lett. 11, (1986); B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, Opt. Lett. 11, 118 (1986); A. Yariv, S. K. Kwong, Opt. Lett. 11, 186 (1986).
[CrossRef] [PubMed]

Arditty, H. J.

Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.

Bordé, Ch.

Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.

Boucher, R. H.

R. H. Boucher, Proc. Soc. Photo-Opt. Instrum. Eng. 231, 130 (1980).

Chang, T. Y.

Cronin-Golomb, M.

M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Feinberg, J.

Fischer, B.

Graindorge, Ph.

Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.

Hellwarth, R. W.

Huignard, J. P.

Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.

Ikeda, O.

Kojima, H.

MacDonald, K. R.

Papuchon, M.

Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.

Paslaski, J.

M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

Sato, T.

Segev, M.

Sternklar, S.

Weiss, S.

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Appl. Phys. Lett. (3)

M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

B. Fischer, S. Sternklar, Appl. Phys. Lett. 47, 1 (1985).
[CrossRef]

B. Fischer, S. Sternklar, S. Weiss, Appl. Phys. Lett. 48, 1567 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (5)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. H. Boucher, Proc. Soc. Photo-Opt. Instrum. Eng. 231, 130 (1980).

Other (1)

Ph. Graindorge, H. J. Arditty, M. Papuchon, J. P. Huignard, Ch. Bordé, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), pp. 368–374.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for the DPCM: VBS, variable beam splitter; BS’s, beam splitters; T’s, transparencies; L’s lenses; F’s, optical fibers; S’s, screens. Possible frequency nondegeneracy in the beams is denoted by δ. The laser’s output frequency is ω (see Ref. 4).

Fig. 2
Fig. 2

Output beams 3 and 1 of the DPCM seen simultaneously at S1 and S2 (from left to right). The pictures display a resolution of better than 5 lines/mm.

Fig. 3
Fig. 3

Schematic of the experimental setup for oscillator by two facing DPCM’s. Symbols are as in Fig. 1. Frequency degeneracy is denoted by δ1, and δ2 (see Ref. 4).

Fig. 4
Fig. 4

Oscillation beams 3, 1, and 1′ of Fig. 4 seen simultaneously at screens S1, S2, and S3 (from left to right).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = a 2 [ q - 1 / 2 + q 1 / 2 ] 2 - [ q - 1 / 2 - q 1 / 2 ] 2 4 ,
tanh ( - γ l 2 a ) = a .
R 1 = T / q ,             R 2 = T q .
1 - a 1 + a < q < 1 + a 1 - a .
T 1 ,             R 1 , 2 q 1 .

Metrics