Abstract

We report the application of a stress-induced change in the cavity of a monolithic Nd:YAG laser as a means for precisely tuning the laser's emission frequency. By using a piezoelectric transducer to vary the applied stress, we can scan the laser emission frequency rapidly and monotonically over as much as 76.5 GHz. As a consequence of the stress-induced birefringence, the device can also be operated simultaneously in two orthogonally polarized modes that exhibit different tuning rates with applied stress.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  2. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).
    [CrossRef] [PubMed]
  3. P. Esherick, A. Owyoung, J. Opt. Soc. Am. B 4, 41 (1987).
    [CrossRef]
  4. D. A. Pinnow in Handbook of Lasers, R. J. Pressley, ed. (Chemical Rubber Company, Cleveland, 1971), pp. 478–481.
  5. T. Kushida, Phys. Rev. 185, 500 (1969).
    [CrossRef]
  6. L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
    [CrossRef]
  7. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, New York, 1985), pp. 188–192.

1987 (1)

1985 (2)

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

1969 (1)

T. Kushida, Phys. Rev. 185, 500 (1969).
[CrossRef]

Bloom, D. M.

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Byer, R. L.

Dixon, G. J.

Esherick, P.

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Hadley, G. R.

Kane, T. J.

Kushida, T.

T. Kushida, Phys. Rev. 185, 500 (1969).
[CrossRef]

Owyoung, A.

Pinnow, D. A.

D. A. Pinnow in Handbook of Lasers, R. J. Pressley, ed. (Chemical Rubber Company, Cleveland, 1971), pp. 478–481.

Rahn, L. A.

Schmitt, R. L.

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, New York, 1985), pp. 188–192.

Zhou, B.

Electron. Lett. (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. (1)

T. Kushida, Phys. Rev. 185, 500 (1969).
[CrossRef]

Other (2)

A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, New York, 1985), pp. 188–192.

D. A. Pinnow in Handbook of Lasers, R. J. Pressley, ed. (Chemical Rubber Company, Cleveland, 1971), pp. 478–481.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Output wavelength of the fast mode as a function of the voltage applied to the piezoelectric transducer as observed with a 1-m spectrograph. For Figs. 13 the piezoelectric transducer has been mechanically preloaded to give an initial splitting of ∼10 GHz.

Fig. 2
Fig. 2

Transmission of the fast mode through a fixed-frequency 1.5-GHz confocal Fabry–Perot étalon (vertical axis) as a function of voltage (horizontal axis) applied to the piezoelectric transducer. The driving voltage consisted of a 100-Hz, 150-V triangularly shaped waveform of which only the rising portion is shown in this 1-sec exposure photograph.

Fig. 3
Fig. 3

Frequency sweep of both fast and slow modes as observed by their transmission through a 1.5-GHz confocal Fabry–Perot étalon. The higher-intensity peaks correspond to the slow mode, while the more frequently occurring lower-intensity peaks correspond to the fast mode. In this figure the slow and fast modes are lasing in different longitudinal modes such that the starting wavelengths of their scans are 1064.24 and 1063.96 nm, respectively. The horizontal axis corresponds to a 100-V ramp of the voltage applied to the piezoelectric transducer.

Fig. 4
Fig. 4

Optical and rf spectrum analyzer displays of the dual-frequency output from the Nd:YAG resonator. The upper trace shows the splitting between the two modes in a 150-MHz/division sweep of a confocal étalon optical spectrum analyzer. The lower trace shows the rf power spectrum (10 dB/division), centered at 410 MHz, output by a photodiode detecting the difference-frequency beat note.

Metrics