Abstract

A novel nondestructive propagation-loss measurement technique for single-mode waveguides is demonstrated. The method calculates the total propagation-loss coefficient from the measured ratio of the retroreflected and transmitted light from the waveguide and is independent of the coupling efficiency of the input light. A surface-wave transducer is utilized as an acousto-optic modulator in a lock-in scheme to enhance the measurement ease and precision.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).
  2. R. G. Walker, Electron. Lett. 21, 582 (1985).
  3. H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1986).
    [CrossRef]
  4. Similar to the method described inY. H. Won, P. C. Jaussaud, G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
    [CrossRef]
  5. P. W. Baumeister, R. Hahn, D. Harrison, Opt. Acta 19, 853 (1972).
    [CrossRef]

1986 (1)

H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).

1985 (1)

R. G. Walker, Electron. Lett. 21, 582 (1985).

1980 (1)

Similar to the method described inY. H. Won, P. C. Jaussaud, G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[CrossRef]

1972 (1)

P. W. Baumeister, R. Hahn, D. Harrison, Opt. Acta 19, 853 (1972).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, R. Hahn, D. Harrison, Opt. Acta 19, 853 (1972).
[CrossRef]

Brandenburg, A.

H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).

Chartier, G. H.

Similar to the method described inY. H. Won, P. C. Jaussaud, G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[CrossRef]

Hahn, R.

P. W. Baumeister, R. Hahn, D. Harrison, Opt. Acta 19, 853 (1972).
[CrossRef]

Harrison, D.

P. W. Baumeister, R. Hahn, D. Harrison, Opt. Acta 19, 853 (1972).
[CrossRef]

Jaussaud, P. C.

Similar to the method described inY. H. Won, P. C. Jaussaud, G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1986).
[CrossRef]

Schlaak, H. F.

H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).

Sulz, G.

H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).

Walker, R. G.

R. G. Walker, Electron. Lett. 21, 582 (1985).

Won, Y. H.

Similar to the method described inY. H. Won, P. C. Jaussaud, G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[CrossRef]

Zhan, Y.-L.

H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).

Appl. Phys. Lett. (1)

Similar to the method described inY. H. Won, P. C. Jaussaud, G. H. Chartier, Appl. Phys. Lett. 37, 269 (1980).
[CrossRef]

Electron. Lett. (1)

R. G. Walker, Electron. Lett. 21, 582 (1985).

Opt. Acta (1)

P. W. Baumeister, R. Hahn, D. Harrison, Opt. Acta 19, 853 (1972).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

H. F. Schlaak, G. Sulz, Y.-L. Zhan, A. Brandenburg, Proc. Soc. Photo-Opt. Instrum. Eng. 651, 240 (1986).

Other (1)

H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Waveguide geometry for the R/T loss measurement technique: (a) top view; (b) side view showing an exaggerated bevel angle θ at the waveguide edges.

Fig. 2
Fig. 2

Comparison of the theoretical relative error in the determination of the propagation-loss coefficient for the R/T and Fabry–Perot techniques. The assumptions of a 1% measurement error and perfect Fresnel reflection at the edges are made.

Fig. 3
Fig. 3

Measured loss coefficient obtained with the R/T method for different coupling efficiencies of the input light.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I T = ( 1 R b S b ) 10 α I 1 1 R a R b 10 2 β ,
I R = ( 1 R a S a ) 10 α 10 β ( R b S b ) I 1 1 R a R b 10 2 β ,
I R I T = ( 1 R a S a ) 10 β ( R b S b ) ( 1 R b S b ) .
γ 10 x log 10 ( R b I T I R ) .
d γ γ = 0.434 β ( d I R I R + d R b R b ) ,

Metrics