Abstract

We demonstrate experimentally and explain theoretically polarization-preserving imaging through a lossy amplitude-distorting medium. This is accomplished by propagating the beam, before its arrival at the lossy distorting medium, through a (multi) mode- and polarization-scrambling fiber and reflecting the signal, after it has passed the lossy distorting medium, from a photorefractive phase-conjugate mirror.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983), and references therein.
  2. K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 618 (1986).
    [CrossRef]
  3. A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986)
    [CrossRef] [PubMed]
  4. Y. Tomita, R. Yahalom, A. Yariv, Opt. Lett. 12, 1017 (1987)
    [CrossRef] [PubMed]
  5. Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersion,” J. Opt. Soc. Am. B (to be published).
  6. A. Yariv, J. Opt, Soc. Am. 66, 301 (1976).
  7. A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
    [CrossRef]
  8. G. J. Dunning, R. C. Lind, Opt. Lett. 7, 558 (1982).
    [CrossRef] [PubMed]
  9. B. Fisher, S. Sternklar, Appl. Phys. Lett. 46, 113 (1985).
    [CrossRef]
  10. P. H. Beckwith, I. McMichael, P. Yeh, Opt. Lett. 12, 510 (1987).
    [CrossRef] [PubMed]
  11. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 197.
  12. It should be noted that since the experiment is made for the distorter placed on both the image plane and the far-field plane of the fiber end, the phase-conjugate images obtained here are not a consequence of simple Fourier filtering of the input image.

1987

1986

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986)
[CrossRef] [PubMed]

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 618 (1986).
[CrossRef]

1985

B. Fisher, S. Sternklar, Appl. Phys. Lett. 46, 113 (1985).
[CrossRef]

1982

1976

A. Yariv, J. Opt, Soc. Am. 66, 301 (1976).

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[CrossRef]

Beckwith, P. H.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 197.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 197.

Dunning, G. J.

Fisher, B.

B. Fisher, S. Sternklar, Appl. Phys. Lett. 46, 113 (1985).
[CrossRef]

Kwong, S.-K.

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 618 (1986).
[CrossRef]

Kyuma, K.

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 618 (1986).
[CrossRef]

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986)
[CrossRef] [PubMed]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 197.

Lind, R. C.

McMichael, I.

Opt, J.

A. Yariv, J. Opt, Soc. Am. 66, 301 (1976).

Sternklar, S.

B. Fisher, S. Sternklar, Appl. Phys. Lett. 46, 113 (1985).
[CrossRef]

Tomita, Y.

Y. Tomita, R. Yahalom, A. Yariv, Opt. Lett. 12, 1017 (1987)
[CrossRef] [PubMed]

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986)
[CrossRef] [PubMed]

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersion,” J. Opt. Soc. Am. B (to be published).

Yahalom, R.

Y. Tomita, R. Yahalom, A. Yariv, Opt. Lett. 12, 1017 (1987)
[CrossRef] [PubMed]

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersion,” J. Opt. Soc. Am. B (to be published).

Yariv, A.

Y. Tomita, R. Yahalom, A. Yariv, Opt. Lett. 12, 1017 (1987)
[CrossRef] [PubMed]

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 618 (1986).
[CrossRef]

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986)
[CrossRef] [PubMed]

A. Yariv, J. Opt, Soc. Am. 66, 301 (1976).

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[CrossRef]

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersion,” J. Opt. Soc. Am. B (to be published).

Yeh, P.

Appl. Phys. Lett.

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 618 (1986).
[CrossRef]

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[CrossRef]

B. Fisher, S. Sternklar, Appl. Phys. Lett. 46, 113 (1985).
[CrossRef]

Opt. Lett.

Soc. Am.

A. Yariv, J. Opt, Soc. Am. 66, 301 (1976).

Other

R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983), and references therein.

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersion,” J. Opt. Soc. Am. B (to be published).

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 197.

It should be noted that since the experiment is made for the distorter placed on both the image plane and the far-field plane of the fiber end, the phase-conjugate images obtained here are not a consequence of simple Fourier filtering of the input image.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A method to undo the lossy distortion effect by means of the tandem combination of the mode-dispersing medium (M) and the PCM. The lossy distortion due to the distorting medium (C) occurs between the M and the PCM.

Fig. 2
Fig. 2

The experimental arrangement. In (a) the out-coupled beam E(2) is imaged onto F. In (b) E(2) is quasi-collimated onto F.

Fig. 3
Fig. 3

The degree of polarization P and the degree of polarization recovery p of the field E(4) at S as a function of the transmission loss due to F for the linearly x-polarized input beam.

Fig. 4
Fig. 4

(a) Input image. (b) Phase-conjugate image of the x polarization without F (12 times the intensity-attenuated image). (c) Phase-conjugate image of the y polarization without F. (d)–(f) Phase-conjugate images of the x polarization with various transmission losses due to F: (d) loss 23% (12 times the intensity-attenuated image), (e) loss 53% (2 times the intensity-attenuated image), (f) loss 68.5%.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( 2 ) = M E ( 1 )
M = [ M x x M x y M y x M y y ] ,
E ( 5 ) = r C [ E ( 2 ) ] * ,
C = [ C x x 0 0 0 ] ,
E ( 6 ) = r M C M * [ E ( 1 ) ] * ,
M C M * = [ M x x C x x M x x * M x x C x x M x y * M y x C x x M x x * M y x C x x M x y * ] .
( M C M * ) i j { 1 2 N k = 1 N ( C x x ) k k for i = j O ( 1 / N ) for i j .
E ( 6 ) = 1 2 r [ 1 N k = 1 N ( C x x ) k k ] [ E ( 1 ) ] * + V ,

Metrics