Abstract

We report the investigation of polarization and spatial information recovery using a fiber-coupled phase-conjugate mirror. A marked dependence of the phase-conjugate output on the input-beam conditions is experimentally observed. A theoretical model for these phenomena is also discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986).
    [CrossRef]
  2. A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986).
    [CrossRef] [PubMed]
  3. R. Yahalom, K. Kyuma, A. Yariv, Appl. Phys. Lett. 50, 792 (1987).
    [CrossRef]
  4. S.-K. Kwong, R. Yahalom, K. Kyuma, A. Yariv, Opt. Lett. 12, 337 (1987).
    [CrossRef] [PubMed]
  5. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  6. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 555.
  7. Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersal and phase conjugation,” submitted to J. Opt. Soc. Am. B.
  8. After the submission of this manuscript we learned that a similar conclusion was independently reported by I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987).
    [CrossRef] [PubMed]

1987 (3)

1986 (2)

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986).
[CrossRef]

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986).
[CrossRef] [PubMed]

1982 (1)

Beckwith, P.

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 555.

Feinberg, J.

Kwong, S.-K.

S.-K. Kwong, R. Yahalom, K. Kyuma, A. Yariv, Opt. Lett. 12, 337 (1987).
[CrossRef] [PubMed]

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986).
[CrossRef]

Kyuma, K.

R. Yahalom, K. Kyuma, A. Yariv, Appl. Phys. Lett. 50, 792 (1987).
[CrossRef]

S.-K. Kwong, R. Yahalom, K. Kyuma, A. Yariv, Opt. Lett. 12, 337 (1987).
[CrossRef] [PubMed]

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986).
[CrossRef] [PubMed]

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986).
[CrossRef]

McMichael, I.

Tomita, Y.

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986).
[CrossRef] [PubMed]

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersal and phase conjugation,” submitted to J. Opt. Soc. Am. B.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 555.

Yahalom, R.

S.-K. Kwong, R. Yahalom, K. Kyuma, A. Yariv, Opt. Lett. 12, 337 (1987).
[CrossRef] [PubMed]

R. Yahalom, K. Kyuma, A. Yariv, Appl. Phys. Lett. 50, 792 (1987).
[CrossRef]

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersal and phase conjugation,” submitted to J. Opt. Soc. Am. B.

Yariv, A.

R. Yahalom, K. Kyuma, A. Yariv, Appl. Phys. Lett. 50, 792 (1987).
[CrossRef]

S.-K. Kwong, R. Yahalom, K. Kyuma, A. Yariv, Opt. Lett. 12, 337 (1987).
[CrossRef] [PubMed]

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986).
[CrossRef]

A. Yariv, Y. Tomita, K. Kyuma, Opt. Lett. 11, 809 (1986).
[CrossRef] [PubMed]

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersal and phase conjugation,” submitted to J. Opt. Soc. Am. B.

Yeh, P.

Appl. Phys. Lett. (2)

K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986).
[CrossRef]

R. Yahalom, K. Kyuma, A. Yariv, Appl. Phys. Lett. 50, 792 (1987).
[CrossRef]

Opt. Lett. (4)

Other (2)

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 555.

Y. Tomita, R. Yahalom, A. Yariv, “Theory of polarization and spatial information recovery by modal dispersal and phase conjugation,” submitted to J. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement. BE, beam expander; P1, P2, polarizers to guarantee the x-polarized input to the fiber and the crystal, respectively; D1, D2, D3, detectors for measuring the power of the beams E(1), E x ( 2 ), and E(3), respectively.

Fig. 2
Fig. 2

Degree of polarization recovery p and degree of polarization P together with reflectivity R as a function of (ϕ/ϕ0)2 for the linearly x-polarized input: p (Δ), P (○), and R (●). The diameter Φ of AP2 is identical to ϕ.

Fig. 3
Fig. 3

Intensity distributions of phase-conjugate output beams for the linearly x-polarized input: (a) x-polarized component (signal + noise) and (b) y-polarized component (noise) for (ϕ/ϕ0)2 = 0.005; (c) x-polarized component (signal + noise) and (d) y-polarized component (noise) for (ϕ/ϕ0)2 = 0.69.

Fig. 4
Fig. 4

Theoretical curves of degree of polarization P as a function of (ϕ/ϕ0)2 for a uniform distribution and Gaussian distributions (ψ/ϕ0 = 0.5), together with the experimental data shown in Fig. 2: p(○) and P(●).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( 4 ) = r M C M * ( E ( 1 ) ) * ,
( I x ( 4 ) ) i = | r | 2 l = 1 N m = 1 N | ( M x x ) l i | 2 | ( M x x ) m i | 2 ( I ( 1 ) ) i + ( N x ) i
( I y ( 4 ) ) i = ( N y ) i ,
P x = P t + P M / 2
P y = P M / 2 ,
θ i = ( I ( 1 ) ) i i = 1 N ( I ( 1 ) ) i
Δ i = 2 ( N x ) i P N = 2 ( N y ) i P N
P 0 = | r | 2 [ l = 1 N m = 1 N | ( M x x ) l m | 2 ( I ( 1 ) ) m + l = 1 N k = 1 N k = 1 ( k k ) N ( M x x ) l k ( M x x ) l k * ( A x ( 1 ) ) k ( A x ( 1 ) ) k * ] ,
l = 1 N | ( M x x ) l m | 2 = 1 / 2 for any m
P = 1 / ( 1 + β ) ,

Metrics