Abstract

We report 13% second-harmonic conversion efficiency of a 15-mW, cw, diode-laser-pumped Nd:YAG oscillator. 2 mW of single-axial-mode 532-mm radiation was generated by externally resonant second-harmonic generation in a monolithic MgO:LiNbO3 nonlinear crystal cavity. The measured finesse of 450 for the monolithic external cavity indicated that absorption and scatter losses in the doubler were less than 0.8%.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  2. T. Y. Fan, G. J. Dixon, R. L. Byer, Opt. Lett. 11, 204 (1986).
    [CrossRef] [PubMed]
  3. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
    [CrossRef]
  4. A. Askin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  5. T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).
  6. T. J. Kane, R. L. Byer, Opt. Lett. 10, 65 (1985).
    [CrossRef] [PubMed]
  7. W. R. Trutna, D. K. Donald, M. Nazarathy, Opt. Lett. 12, 248 (1987).
    [CrossRef] [PubMed]
  8. T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
    [CrossRef] [PubMed]
  9. J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).
  10. A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
    [CrossRef]
  11. G. D. Boyd, D. A. Klienman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  12. S. K. Kurtz, J. Jerphagnon, M. M. Choy, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1979), p. 673.
  13. P. Esherick, A. Owyoung, J. Opt. Soc. Am. B 4, 41 (1987)
    [CrossRef]

1987 (6)

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

W. R. Trutna, D. K. Donald, M. Nazarathy, Opt. Lett. 12, 248 (1987).
[CrossRef] [PubMed]

T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
[CrossRef] [PubMed]

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

P. Esherick, A. Owyoung, J. Opt. Soc. Am. B 4, 41 (1987)
[CrossRef]

1986 (2)

1985 (2)

1968 (1)

G. D. Boyd, D. A. Klienman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1966 (1)

A. Askin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Askin, A.

A. Askin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Baer, T.

Boyd, G. D.

G. D. Boyd, D. A. Klienman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

A. Askin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Byer, R. L.

Choy, M. M.

S. K. Kurtz, J. Jerphagnon, M. M. Choy, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1979), p. 673.

Cordova-Plaza, A.

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

Digonnet, M. J. F.

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

Dixon, G. J.

Donald, D. K.

Dziedzic, J. M.

A. Askin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Esherick, P.

Fan, T. Y.

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

T. Y. Fan, G. J. Dixon, R. L. Byer, Opt. Lett. 11, 204 (1986).
[CrossRef] [PubMed]

Jerphagnon, J.

S. K. Kurtz, J. Jerphagnon, M. M. Choy, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1979), p. 673.

Kane, T. J.

Klienman, D. A.

G. D. Boyd, D. A. Klienman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kozlovsky, W. J.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

Kurtz, S. K.

S. K. Kurtz, J. Jerphagnon, M. M. Choy, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1979), p. 673.

Nazarathy, M.

Nightingale, J. L.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

Nilsson, A. C.

Owyoung, A.

Reade, G. E.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

Rybicki, A.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

Shaw, H. J.

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

Silva, W. J.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

Trutna, W. R.

Zhou, B.

IEEE J. Quantum Electron. (3)

A. Askin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

A. Cordova-Plaza, M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-23, 262 (1987).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Klienman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (5)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 20 (1987).

Other (1)

S. K. Kurtz, J. Jerphagnon, M. M. Choy, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1979), p. 673.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. The two dichroic mirrors allow the power in both second-harmonic outputs, as well as the transmitted fundamental power, to be measured. The Faraday isolator allows the fundamental power backreflected from the doubling cavity to be detected and therefore to be used for feedback in optimizing resonance. POL, polarizer.

Fig. 2
Fig. 2

Total second-harmonic power versus incident power at the fundamental. The squares are experimental data, and the line is theory. The nonparabolic output is expected theoretically, since the coupling efficiency into the resonator changes with increasing second-harmonic conversion.

Fig. 3
Fig. 3

Transmitted fundamental power as a function of incident power at the fundamental. The transmitted fundamental is directly proportional to the circulating power in the resonant doubler and can be used for comparison with theory.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r m = t 2 t SHG 2 r 2 ,
P c = t 1 P 1 ( 1 r 1 r m ) 2 ,
P 2 = 2 γ SHG P c 2 .

Metrics