Abstract

With simple optical geometries a separate resonant Fabry–Perot cavity can serve as an optical feedback element that forces a semiconductor laser automatically to lock its frequency optically to the cavity resonance. This method is used to stabilize laser frequencies and reduce linewidths by a factor of 1000 from 20 MHz to approximately 20 kHz.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [CrossRef]
  2. K. R. Preston, K. C. Woollard, K. H. Cameron, Electron. Lett. 17, 931 (1981).
    [CrossRef]
  3. J. Mark, E. Bodtker, B. Tromborg, Electron. Lett. 21, 1008 (1985).
    [CrossRef]
  4. R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
    [CrossRef]
  5. M. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981).
    [CrossRef]
  6. S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
    [CrossRef]
  7. Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).
  8. J.-L. Picque, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
    [CrossRef]
  9. F. Favre, D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985), and references therein.
    [CrossRef]
  10. M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
    [CrossRef]
  11. Y. Yamamoto, O. Nilsson, S. Saito, IEEE J. Quantum Electron. QE-21, 1919 (1985).
    [CrossRef]
  12. For technical reference, the lasers used were Hitachi HLP 1400's. This mention does not constitute an endorsement, and we expect that other lasers will also be suitable.
  13. M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
    [CrossRef]
  14. D. Hjelme, A. Mickelson, L. Hollberg, B. Dahmani, in Digest of Topical Meeting on Semiconductor Lasers (Optical Society of America, Washington, D.C., 1987), p. 15.
  15. C. H. Henry, IEEE J. Lightwave Technol. LT-4, 298 (1986).
    [CrossRef]
  16. R. J. Lang, A. Yariv, IEEE J. Quantum Electron. QE-22, 436 (1986).
    [CrossRef]
  17. H. Olesen, J. H. Osmundsen, B. Tromborg, IEEE J. Quantum Electron. QE-22, 762 (1986).
    [CrossRef]
  18. Drift rates of Δν/νt ≃ 10−14/sec have been reported for gas lasers electronically locked to optical cavities: D. Hils, J. L. Hall, in Digest of XV International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), p. 102.

1987 (1)

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

1986 (3)

C. H. Henry, IEEE J. Lightwave Technol. LT-4, 298 (1986).
[CrossRef]

R. J. Lang, A. Yariv, IEEE J. Quantum Electron. QE-22, 436 (1986).
[CrossRef]

H. Olesen, J. H. Osmundsen, B. Tromborg, IEEE J. Quantum Electron. QE-22, 762 (1986).
[CrossRef]

1985 (4)

J. Mark, E. Bodtker, B. Tromborg, Electron. Lett. 21, 1008 (1985).
[CrossRef]

F. Favre, D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985), and references therein.
[CrossRef]

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

Y. Yamamoto, O. Nilsson, S. Saito, IEEE J. Quantum Electron. QE-21, 1919 (1985).
[CrossRef]

1983 (1)

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

1981 (3)

M. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981).
[CrossRef]

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

K. R. Preston, K. C. Woollard, K. H. Cameron, Electron. Lett. 17, 931 (1981).
[CrossRef]

1980 (1)

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

1975 (1)

J.-L. Picque, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

1970 (1)

Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).

Bodtker, E.

J. Mark, E. Bodtker, B. Tromborg, Electron. Lett. 21, 1008 (1985).
[CrossRef]

Buus, J.

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

Bykovskii, Yu. A.

Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).

Cameron, K. H.

K. R. Preston, K. C. Woollard, K. H. Cameron, Electron. Lett. 17, 931 (1981).
[CrossRef]

Dahmani, B.

D. Hjelme, A. Mickelson, L. Hollberg, B. Dahmani, in Digest of Topical Meeting on Semiconductor Lasers (Optical Society of America, Washington, D.C., 1987), p. 15.

Devlin, W. J.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

Favre, F.

F. Favre, D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985), and references therein.
[CrossRef]

Fleming, M.

M. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981).
[CrossRef]

Goncharov, I. G.

Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).

Hall, J. L.

Drift rates of Δν/νt ≃ 10−14/sec have been reported for gas lasers electronically locked to optical cavities: D. Hils, J. L. Hall, in Digest of XV International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), p. 102.

Henry, C. H.

C. H. Henry, IEEE J. Lightwave Technol. LT-4, 298 (1986).
[CrossRef]

Hils, D.

Drift rates of Δν/νt ≃ 10−14/sec have been reported for gas lasers electronically locked to optical cavities: D. Hils, J. L. Hall, in Digest of XV International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), p. 102.

Hjelme, D.

D. Hjelme, A. Mickelson, L. Hollberg, B. Dahmani, in Digest of Topical Meeting on Semiconductor Lasers (Optical Society of America, Washington, D.C., 1987), p. 15.

Hollberg, L.

D. Hjelme, A. Mickelson, L. Hollberg, B. Dahmani, in Digest of Topical Meeting on Semiconductor Lasers (Optical Society of America, Washington, D.C., 1987), p. 15.

Kimura, T.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kobayashi, K.

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Kobayashi, S.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kotajima, S.

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

Lang, R.

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lang, R. J.

R. J. Lang, A. Yariv, IEEE J. Quantum Electron. QE-22, 436 (1986).
[CrossRef]

Le Guen, D.

F. Favre, D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985), and references therein.
[CrossRef]

Mark, J.

J. Mark, E. Bodtker, B. Tromborg, Electron. Lett. 21, 1008 (1985).
[CrossRef]

Maslov, V. A.

Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).

Mickelson, A.

D. Hjelme, A. Mickelson, L. Hollberg, B. Dahmani, in Digest of Topical Meeting on Semiconductor Lasers (Optical Society of America, Washington, D.C., 1987), p. 15.

Mooradian, A.

M. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981).
[CrossRef]

Nilsson, O.

Y. Yamamoto, O. Nilsson, S. Saito, IEEE J. Quantum Electron. QE-21, 1919 (1985).
[CrossRef]

Ohtsu, M.

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

Olesen, H.

H. Olesen, J. H. Osmundsen, B. Tromborg, IEEE J. Quantum Electron. QE-22, 762 (1986).
[CrossRef]

Osinski, M.

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

Osmundsen, J. H.

H. Olesen, J. H. Osmundsen, B. Tromborg, IEEE J. Quantum Electron. QE-22, 762 (1986).
[CrossRef]

Picque, J.-L.

J.-L. Picque, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

Preston, K. R.

K. R. Preston, K. C. Woollard, K. H. Cameron, Electron. Lett. 17, 931 (1981).
[CrossRef]

Roizen, S.

J.-L. Picque, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

Saito, S.

Y. Yamamoto, O. Nilsson, S. Saito, IEEE J. Quantum Electron. QE-21, 1919 (1985).
[CrossRef]

Tromborg, B.

H. Olesen, J. H. Osmundsen, B. Tromborg, IEEE J. Quantum Electron. QE-22, 762 (1986).
[CrossRef]

J. Mark, E. Bodtker, B. Tromborg, Electron. Lett. 21, 1008 (1985).
[CrossRef]

Velichanskii, V. L.

Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).

Woollard, K. C.

K. R. Preston, K. C. Woollard, K. H. Cameron, Electron. Lett. 17, 931 (1981).
[CrossRef]

Wyatt, R.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, O. Nilsson, S. Saito, IEEE J. Quantum Electron. QE-21, 1919 (1985).
[CrossRef]

Yariv, A.

R. J. Lang, A. Yariv, IEEE J. Quantum Electron. QE-22, 436 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

J.-L. Picque, S. Roizen, Appl. Phys. Lett. 27, 340 (1975).
[CrossRef]

Electron. Lett. (3)

K. R. Preston, K. C. Woollard, K. H. Cameron, Electron. Lett. 17, 931 (1981).
[CrossRef]

J. Mark, E. Bodtker, B. Tromborg, Electron. Lett. 21, 1008 (1985).
[CrossRef]

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

IEEE J. Lightwave Technol. (1)

C. H. Henry, IEEE J. Lightwave Technol. LT-4, 298 (1986).
[CrossRef]

IEEE J. Quantum Electron. (9)

R. J. Lang, A. Yariv, IEEE J. Quantum Electron. QE-22, 436 (1986).
[CrossRef]

H. Olesen, J. H. Osmundsen, B. Tromborg, IEEE J. Quantum Electron. QE-22, 762 (1986).
[CrossRef]

M. Osinski, J. Buus, IEEE J. Quantum Electron. QE-23, 9 (1987).
[CrossRef]

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

M. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981).
[CrossRef]

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

F. Favre, D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985), and references therein.
[CrossRef]

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

Y. Yamamoto, O. Nilsson, S. Saito, IEEE J. Quantum Electron. QE-21, 1919 (1985).
[CrossRef]

Sov. Phys. Semicond. (1)

Yu. A. Bykovskii, V. L. Velichanskii, I. G. Goncharov, V. A. Maslov, Sov. Phys. Semicond. 4, 580 (1970).

Other (3)

For technical reference, the lasers used were Hitachi HLP 1400's. This mention does not constitute an endorsement, and we expect that other lasers will also be suitable.

D. Hjelme, A. Mickelson, L. Hollberg, B. Dahmani, in Digest of Topical Meeting on Semiconductor Lasers (Optical Society of America, Washington, D.C., 1987), p. 15.

Drift rates of Δν/νt ≃ 10−14/sec have been reported for gas lasers electronically locked to optical cavities: D. Hils, J. L. Hall, in Digest of XV International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), p. 102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of one version of the optical feedback locking system. Lens L2 is used to mode match the laser into the confocal reference cavity. The aperture blocks the unwanted feedback of type I while passing the desired feedback of type II. The variable attenuator is used to study the feedback power dependence of the locking process. The piezoelectric translator PZT-ϕ is used to optimize the feedback phase relative to the undisturbed laser. PZT-C is used to scan the reference cavity and in turn the optically locked laser frequency. A photodetector (Det.) monitors the transmitted power.

Fig. 2
Fig. 2

The lower trace displays the power transmitted through the reference cavity as a function of the laser current. The upper trace, taken simultaneously, shows the fluorescence from a cesium cell as the laser scans from left to right across the 852-nm cesium resonance. The flat portion on the side of the fluorescence signal and on the peak of the cavity resonance occurs when the laser frequency locks to the cavity resonance and no longer scans with the laser current. The indicated locking range ≃500 MHz corresponds to the frequency range that the laser would normally scan without the optical self-locking.

Fig. 3
Fig. 3

The beat note between two semiconductor lasers is shown on a rf spectrum analyzer with a sensitivity of 10 dB/division vertically and 20 MHz/division horizontally and a resolution bandwidth of 300 kHz. The upper trace shows the broad beat-note peak that is observed when one of the two lasers is free running and unstabilized. The other, sharply peaked, trace shows the beat note when both of the lasers are optically self-locked to separate Fabry–Perot reference cavities. In the locked case the peak width is limited by the 300-kHz resolution of the spectrum analyzer.

Fig. 4
Fig. 4

Diode-laser beat note displayed with higher resolution now shows a very narrow width as measured on a rf spectrum analyzer. The approximately 20-kHz width is inferred from the two markers on the central peak (which are separated by −16 dB and 13 kHz), the spectrum-analyzer resolution of 10 kHz, the sweep rate of 30 msec/division, and the repeatability of the measurement.

Metrics