Abstract

We report the development of a new method of instantaneously measuring three-dimensional velocity profiles and structure in air and oxygen. No seeding of particles, molecules, or atomic species is required. The method combines Raman excitation and laser-induced electronic fluorescence to generate a time-gated image of the moving oxygen molecules.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 37, 885 (1986).
    [Crossref]
  2. S. Cheng, M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
    [Crossref]
  3. J. C. McDaniel, B. Hiller, R. K. Hanson, Opt. Lett. 8, 51 (1983).
    [Crossref] [PubMed]
  4. M. Zimmermann, S. Cheng, R. B. Miles, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1982), paper ThS4.
  5. J. A. Sell, R. J. Cattolica, Appl. Opt. 25, 1420 (1986).
    [Crossref] [PubMed]
  6. R. J. Exton, M. E. Hillard, Appl. Opt. 25, 14 (1986).
    [Crossref] [PubMed]
  7. D. A. King, R. Haines, N. R. Isenor, B. J. Orr, Opt. Lett. 8, 629 (1983).
    [Crossref] [PubMed]
  8. R. Frey, J. Lukasik, J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).
    [Crossref]
  9. K. Yoshino, D. E. Freeman, W. H. Perkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).
    [Crossref]
  10. B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
    [Crossref]

1986 (4)

J. A. Sell, R. J. Cattolica, Appl. Opt. 25, 1420 (1986).
[Crossref] [PubMed]

R. J. Exton, M. E. Hillard, Appl. Opt. 25, 14 (1986).
[Crossref] [PubMed]

M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 37, 885 (1986).
[Crossref]

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
[Crossref]

1984 (1)

K. Yoshino, D. E. Freeman, W. H. Perkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).
[Crossref]

1983 (3)

1972 (1)

R. Frey, J. Lukasik, J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).
[Crossref]

Berzins, L.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
[Crossref]

Carver, J. H.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
[Crossref]

Cattolica, R. J.

Cheng, S.

S. Cheng, M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[Crossref]

M. Zimmermann, S. Cheng, R. B. Miles, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1982), paper ThS4.

Ducuing, J.

R. Frey, J. Lukasik, J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).
[Crossref]

Exton, R. J.

Freeman, D. E.

K. Yoshino, D. E. Freeman, W. H. Perkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).
[Crossref]

Frey, R.

R. Frey, J. Lukasik, J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).
[Crossref]

Gibson, S. T.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
[Crossref]

Haines, R.

Hanson, R. K.

Hillard, M. E.

Hiller, B.

Isenor, N. R.

King, D. A.

Lewis, B. R.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
[Crossref]

Lukasik, J.

R. Frey, J. Lukasik, J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).
[Crossref]

McDaniel, J. C.

Miles, R. B.

M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 37, 885 (1986).
[Crossref]

S. Cheng, M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[Crossref]

M. Zimmermann, S. Cheng, R. B. Miles, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1982), paper ThS4.

Orr, B. J.

Perkinson, W. H.

K. Yoshino, D. E. Freeman, W. H. Perkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).
[Crossref]

Sell, J. A.

Yoshino, K.

K. Yoshino, D. E. Freeman, W. H. Perkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).
[Crossref]

Zimmermann, M.

M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 37, 885 (1986).
[Crossref]

S. Cheng, M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[Crossref]

M. Zimmermann, S. Cheng, R. B. Miles, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1982), paper ThS4.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 37, 885 (1986).
[Crossref]

S. Cheng, M. Zimmermann, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[Crossref]

Chem. Phys. Lett. (1)

R. Frey, J. Lukasik, J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).
[Crossref]

J. Phys. Chem. Ref. Data (1)

K. Yoshino, D. E. Freeman, W. H. Perkinson, J. Phys. Chem. Ref. Data 13, 207 (1984).
[Crossref]

J. Quantum Spectrosc. Radiat. Transfer (1)

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, J. Quantum Spectrosc. Radiat. Transfer 36, 187 (1986).
[Crossref]

Opt. Lett. (2)

Other (1)

M. Zimmermann, S. Cheng, R. B. Miles, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1982), paper ThS4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) CARS spectrum of oxygen (Q branch) at low power. (b) CARS spectrum of oxygen (Q branch) at high power showing saturation broadening.

Fig. 2
Fig. 2

Energy-level diagram of the RELIEF scheme. Tagging is by stimulated Raman excitation of 3Σg (υ″ = 1). Interrogation is by laser-induced electronic fluorescence from 3Σu (υ′ = 7) following excitation with an ArF laser.

Fig. 3
Fig. 3

Overlap of the ArF-laser tuning curve with the transitions from the ground (υ″ = 0) and vibrationally excited (υ″ = 1) states of oxygen.

Fig. 4
Fig. 4

Visible fluorescence spectrum following excitation of the R[25] line in the 3Σg (υ″ = 1) → 3Σu (υ′ = 7) band.

Fig. 5
Fig. 5

Composite picture of tagged lines of oxygen across a small oxygen jet. The jet is located at the center of the line and is directed upward. Each line in the figure corresponds to a separate experiment; the lines are offset for clarity. Interrogation is at 0, 10, 20, 30, 40, and 50 μsec shown, respectively, from bottom to top. A millimeter scale is shown on the right-hand side for quantitative velocity measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w = ( 4 τ D + w 0 2 ) 1 / 2 ,
ξ 0.1 w Δ = 0.1 ( 4 τ D + w 0 2 ) 1 / 2 τ υ ,

Metrics