Abstract

The use of a linearly chirped Bragg grating filter for dispersion cancellation in an optical-fiber link is discussed. Numerical and theoretical calculations are made, which show that, with the proper taper function, the filter can have a high reflectivity and a quasi-constant nonzero dispersion, proportional to the inverse of the chirp. The filter can compress dispersion-broadened pulses by factors of 2–5 or more, if many filters are cascaded. Its compactness and efficiency would make it suitable for on-line implementation.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, D. Fekete, D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef] [PubMed]
  2. A. B. Puc, G. L. Yip, Electron. Lett. 16, 162 (1980).
    [CrossRef]
  3. C. Lin, H. Kogelnik, L. G. Cohen, Opt. Lett. 5, 476 (1980).
    [CrossRef] [PubMed]
  4. H. Nakatsuka, D. Grishkowsky, Opt. Lett. 6, 13 (1981).
    [CrossRef] [PubMed]
  5. D. K. W. Lam, B. K. Garside, K. O. Hill, Opt. Lett. 7, 291 (1982).
    [CrossRef] [PubMed]
  6. O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
    [CrossRef]
  7. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [CrossRef]
  8. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
    [CrossRef] [PubMed]
  9. D. K. W. Lam, B. K. Garside, Appl. Opt. 20, 440 (1981).
    [CrossRef] [PubMed]
  10. R. W. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), p. 100.
  11. M. Matsuhara, K. O. Hill, A. Watanabe, J. Opt. Soc. Am. 65, 804 (1975).
    [CrossRef]
  12. H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).
  13. K. O. Hill, Appl. Opt. 13, 1853 (1974).
    [CrossRef] [PubMed]
  14. R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
    [CrossRef]
  15. S. C. Rasleigh, R. Ulrich, Opt. Lett. 5, 354 (1980).
    [CrossRef]

1987

O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

1985

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

1982

1981

1980

1979

1978

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

1976

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).

1975

1974

Ashkin, A.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Bowers, J. E.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Cohen, L. G.

Dziedzic, J. M.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Fekete, D.

Fujii, Y.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Garside, B. K.

Grishkowsky, D.

Hill, K. O.

Hunsperger, R. W.

R. W. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), p. 100.

Johnson, D. C.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[CrossRef] [PubMed]

Kogelnik, H.

Lam, D. K. W.

Lin, C.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

Matsuhara, M.

Nakatsuka, H.

Pepper, D. M.

Pleibel, W.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Puc, A. B.

A. B. Puc, G. L. Yip, Electron. Lett. 16, 162 (1980).
[CrossRef]

Rasleigh, S. C.

Stolen, R. H.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

Ulrich, R.

Watanabe, A.

Yariv, A.

Yip, G. L.

A. B. Puc, G. L. Yip, Electron. Lett. 16, 162 (1980).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 55, 109 (1976).

Electron. Lett.

A. B. Puc, G. L. Yip, Electron. Lett. 16, 162 (1980).
[CrossRef]

IEEE J. Lightwave Technol.

R. H. Stolen, A. Ashkin, J. E. Bowers, J. M. Dziedzic, W. Pleibel, IEEE J. Lightwave Technol. LT-3, 1125 (1985).
[CrossRef]

IEEE J. Quantum Electron.

O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Other

R. W. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), p. 100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Reflectivity of a linearly chirped filter with a constant coupling coefficient versus detuning Δ: κ0L = 2π, F = 40π. (b) Dispersion of the filter versus Δ.

Fig. 2
Fig. 2

(a) Reflectivity of a linearly chirped filter with a Gaussian taper function versus detuning Δ: κ0L = 2π, F = 40π. (b) Dispersion of the filter versus Δ.

Fig. 3
Fig. 3

(a) Shape of the input pulse (solid line), transmitted pulse (dotted line), and recompressed pulse (dashed line) for a normalized fiber length C = 0.048 and a filter with κ0L = 2π and F = 20π. Input pulse FWHM = 0.2n0L/c. The time axis is in units of n0L/c. (b) Same as in (a) for a filter with κ0L = 4π and F = 20π, used five successive times; C = 0.175; input pulse FWHM = 0.3n0L/c.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d A + d z = κ ( z ) exp [ j 0 z B ( z ) d z ] A ,
d A d z = κ ( z ) exp [ j 0 z B ( z ) d z ] A + ,
B ( z ) = 2 β Ω ( z ) ,
B ( z ) = 2 ( β 0 + δ β ) ( Ω 0 + F z L 2 ) = 2 δ β F z F 2 ,
2 ψ ω 2 = n 0 2 L 2 c 2 2 ψ Δ 2 ,
z ( Δ ) = 2 L Δ F
τ ( Δ ) = 2 n 0 c ( 2 L Δ F + L 2 )
2 ψ ω 2 = λ 2 τ 2 π c λ
2 ψ Δ 2 = 4 F
κ ( z ) = κ 0 exp ( 16 z 2 / L 2 ) .
( d τ / d λ ) fiber = D L f ,
L f = 2 π n 0 2 L 2 C D λ 2 c ,

Metrics