Abstract

It is shown how the photon-number amplifier may be used to make, for either novel or conventional sources, an efficient direct-detection receiver and transceiver in a local-area network environment and how the parametric amplifier may be used similarly for a homodyne-detection receiver.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Yuen, Phys. Lett 113A, 405 (1986).
  2. H. P. Yuen, Phys. Rev. Lett. 56, 2176 (1986).
    [CrossRef] [PubMed]
  3. The original terminology “noiseless photon amplifier” was intended to convey the difference between such a number amplifier and an amplitude amplifier, which, while it also amplifies the photon number, has unavoidable added fluctuation for direct detection even in the ideal limit. However, the adjective “noiseless” appears to be misleading, and the new terminology “photon-number amplifier” will be adopted. The parametric amplifier, the usual linear amplifier, and the photon-number amplifier form a natural triad of amplifiers to match homodyne, heterodyne, and direct-detection receivers.
  4. H. A. Haus, J. A. Mullen, Phys. Rev. 128, 2407 (1962).
    [CrossRef]
  5. H. P. Yuen, in Quantum Optics, Experimental Gravitation and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 249–268.
    [CrossRef]
  6. N. Imoto, H. A. Haus, Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
    [CrossRef] [PubMed]
  7. H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
    [CrossRef]
  8. R. Loudon, IEEE J. Quantum Electron. QE-21, 766 (1985).
    [CrossRef]
  9. H. J. Kimble, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), paper TUCC1, p. 34.
  10. J. H. Shapiro, Opt. Lett. 5, 351 (1980).
    [CrossRef] [PubMed]
  11. H. P. Yuen, in Proceedings of the 1975 Conference on Information Sciences and Systems (Johns Hopkins U. Press, Baltimore, Md., 1975), pp. 171–177.
  12. H. P. Yuen, J. H. Shapiro, IEEE Trans. Inform. Theory IT-24, 657 (1978).
    [CrossRef]
  13. P. S. Henry, IEEE J. Quantum Electron. QE-21, 1862 (1985).
    [CrossRef]
  14. S. S. Wagner, IEEE Trans. Commun. COM-35, 419 (1987).
    [CrossRef]

1987 (1)

S. S. Wagner, IEEE Trans. Commun. COM-35, 419 (1987).
[CrossRef]

1986 (2)

H. P. Yuen, Phys. Lett 113A, 405 (1986).

H. P. Yuen, Phys. Rev. Lett. 56, 2176 (1986).
[CrossRef] [PubMed]

1985 (3)

N. Imoto, H. A. Haus, Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
[CrossRef] [PubMed]

P. S. Henry, IEEE J. Quantum Electron. QE-21, 1862 (1985).
[CrossRef]

R. Loudon, IEEE J. Quantum Electron. QE-21, 766 (1985).
[CrossRef]

1980 (1)

1978 (1)

H. P. Yuen, J. H. Shapiro, IEEE Trans. Inform. Theory IT-24, 657 (1978).
[CrossRef]

1976 (1)

H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
[CrossRef]

1962 (1)

H. A. Haus, J. A. Mullen, Phys. Rev. 128, 2407 (1962).
[CrossRef]

Haus, H. A.

N. Imoto, H. A. Haus, Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
[CrossRef] [PubMed]

H. A. Haus, J. A. Mullen, Phys. Rev. 128, 2407 (1962).
[CrossRef]

Henry, P. S.

P. S. Henry, IEEE J. Quantum Electron. QE-21, 1862 (1985).
[CrossRef]

Imoto, N.

N. Imoto, H. A. Haus, Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
[CrossRef] [PubMed]

Kimble, H. J.

H. J. Kimble, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), paper TUCC1, p. 34.

Loudon, R.

R. Loudon, IEEE J. Quantum Electron. QE-21, 766 (1985).
[CrossRef]

Mullen, J. A.

H. A. Haus, J. A. Mullen, Phys. Rev. 128, 2407 (1962).
[CrossRef]

Shapiro, J. H.

J. H. Shapiro, Opt. Lett. 5, 351 (1980).
[CrossRef] [PubMed]

H. P. Yuen, J. H. Shapiro, IEEE Trans. Inform. Theory IT-24, 657 (1978).
[CrossRef]

Wagner, S. S.

S. S. Wagner, IEEE Trans. Commun. COM-35, 419 (1987).
[CrossRef]

Yamamoto, Y.

N. Imoto, H. A. Haus, Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
[CrossRef] [PubMed]

Yuen, H. P.

H. P. Yuen, Phys. Lett 113A, 405 (1986).

H. P. Yuen, Phys. Rev. Lett. 56, 2176 (1986).
[CrossRef] [PubMed]

H. P. Yuen, J. H. Shapiro, IEEE Trans. Inform. Theory IT-24, 657 (1978).
[CrossRef]

H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
[CrossRef]

H. P. Yuen, in Quantum Optics, Experimental Gravitation and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 249–268.
[CrossRef]

H. P. Yuen, in Proceedings of the 1975 Conference on Information Sciences and Systems (Johns Hopkins U. Press, Baltimore, Md., 1975), pp. 171–177.

IEEE J. Quantum Electron. (2)

R. Loudon, IEEE J. Quantum Electron. QE-21, 766 (1985).
[CrossRef]

P. S. Henry, IEEE J. Quantum Electron. QE-21, 1862 (1985).
[CrossRef]

IEEE Trans. Commun. (1)

S. S. Wagner, IEEE Trans. Commun. COM-35, 419 (1987).
[CrossRef]

IEEE Trans. Inform. Theory (1)

H. P. Yuen, J. H. Shapiro, IEEE Trans. Inform. Theory IT-24, 657 (1978).
[CrossRef]

Opt. Lett. (1)

Phys. Lett (1)

H. P. Yuen, Phys. Lett 113A, 405 (1986).

Phys. Rev. (1)

H. A. Haus, J. A. Mullen, Phys. Rev. 128, 2407 (1962).
[CrossRef]

Phys. Rev. A (2)

N. Imoto, H. A. Haus, Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
[CrossRef] [PubMed]

H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
[CrossRef]

Phys. Rev. Lett. (1)

H. P. Yuen, Phys. Rev. Lett. 56, 2176 (1986).
[CrossRef] [PubMed]

Other (4)

The original terminology “noiseless photon amplifier” was intended to convey the difference between such a number amplifier and an amplitude amplifier, which, while it also amplifies the photon number, has unavoidable added fluctuation for direct detection even in the ideal limit. However, the adjective “noiseless” appears to be misleading, and the new terminology “photon-number amplifier” will be adopted. The parametric amplifier, the usual linear amplifier, and the photon-number amplifier form a natural triad of amplifiers to match homodyne, heterodyne, and direct-detection receivers.

H. P. Yuen, in Quantum Optics, Experimental Gravitation and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 249–268.
[CrossRef]

H. J. Kimble, in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1987), paper TUCC1, p. 34.

H. P. Yuen, in Proceedings of the 1975 Conference on Information Sciences and Systems (Johns Hopkins U. Press, Baltimore, Md., 1975), pp. 171–177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Schematic of a transceiver for an optic local-area network. The transmittance for the lossless coupler or beam splitter I is η1, and that of II is η2. The user feeds information to the line through mode f and extracts signals from the line through mode c or reverses this procedure if the amplifier is used in the other direction. The modes g and h can be utilized as additional monitors.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

SNR N b N b 2 Δ N b 2 = N a 2 Δ N a 2 SNR N a ,
SNR N b = SNR N a / [ 1 + G ( G 1 ) G 2 N a + 1 Δ N a 2 ]
SNR N c = SNR N a / [ 1 + η G ( 1 η ) N a Δ N a 2 ] ,
SNR N d = SNR N a / [ 1 + 1 η G η N a Δ N a 2 ]
N c = ( 1 η ) G N a , N d = η G N a
SNR N c SNR N d SNR N a
G ( G 1 ) G 2 N a + 1 Δ N a 2
SNR N c SNR N d ½ SNR N a
b 1 = G ½ a 1 , b 2 = G ½ a 2 ,
SNR b i b i 2 Δ b i 2 = a i 2 Δ a i 2 SNR a i , i = 1 , 2 ,
SNR c 1 = SNR a 1 / [ 1 + η G ( 1 η ) 1 4 Δ a 1 2 ] ,
SNR d 1 = SNR a 1 / [ 1 + 1 η G η 1 4 Δ a 1 2 ] ,
c 1 2 = ( 1 η ) G a 1 2 , d 1 2 = η G a 1 2 .
SNR c 1 SNR d 1 SNR a 1

Metrics