Abstract

Photoinduced anisotropic self-diffraction in photorefractive KNbO3 has been studied. It has been shown that this type of diffraction is ideally suited for spatial light modulation or incoherent-to-coherent conversion. A phase grating that is photoinduced by two coherent light beams causes the diffraction of one of the beams. By spatially modulating the amplitude of the phase grating with an incoherent signal beam it is possible to transfer an incoherent image onto the coherent self-diffracted beam. The performance parameters of this modulator are described with a simple model.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard, J. P. Herriau, Appl. Opt. 17, 2671 (1978).
    [CrossRef] [PubMed]
  2. F. Laeri, T. Tschudi, H. Albers, Opt. Commun. 47, 387 (1983).
    [CrossRef]
  3. M. Z. Zha, P. Günter, Opt. Lett. 10, 184 (1985).
    [CrossRef] [PubMed]
  4. P. Günter, Opt. Lett. 7, 10 (1982).
    [CrossRef] [PubMed]
  5. J. Feinberg, Opt. Lett. 5, 330 (1980).
    [CrossRef] [PubMed]
  6. A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).
  7. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
    [CrossRef] [PubMed]
  8. A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).
  9. P. Günter, Phys. Rep. 93, 199 (1982).
    [CrossRef]
  10. N. V. Kukhtarev, Sov. J. Quantum Electron. 11, 878 (1981).
    [CrossRef]
  11. N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
    [CrossRef]
  12. A. Krumins, P. Günter, Appl. Phys. 19, 153 (1979).
    [CrossRef]
  13. E. Voit, C. Zaldo, P. Günter, Opt. Lett. 11, 309 (1986).
    [CrossRef] [PubMed]
  14. P. Günter, Opt. Commun. 11, 285 (1974).
    [CrossRef]
  15. J. J. Amodei, RCA Rev. 32, 185 (1971).
  16. G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).
  17. E. Voit, in Electro-Optic and Photorefractive Materials, P. Günter, ed., Vol. 18 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1987), pp. 246–265.
    [CrossRef]

1986

1985

M. Z. Zha, P. Günter, Opt. Lett. 10, 184 (1985).
[CrossRef] [PubMed]

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

1984

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
[CrossRef]

1983

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

F. Laeri, T. Tschudi, H. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

1982

1981

N. V. Kukhtarev, Sov. J. Quantum Electron. 11, 878 (1981).
[CrossRef]

1980

J. Feinberg, Opt. Lett. 5, 330 (1980).
[CrossRef] [PubMed]

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

1979

A. Krumins, P. Günter, Appl. Phys. 19, 153 (1979).
[CrossRef]

1978

1974

P. Günter, Opt. Commun. 11, 285 (1974).
[CrossRef]

1971

J. J. Amodei, RCA Rev. 32, 185 (1971).

Albers, H.

F. Laeri, T. Tschudi, H. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Amodei, J. J.

J. J. Amodei, RCA Rev. 32, 185 (1971).

Feinberg, J.

Günter, P.

Herriau, J. P.

Huignard, J. P.

Kamshilin, A. A.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Klein, M. B.

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Krätzig, E.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
[CrossRef]

Krumins, A.

A. Krumins, P. Günter, Appl. Phys. 19, 153 (1979).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
[CrossRef]

N. V. Kukhtarev, Sov. J. Quantum Electron. 11, 878 (1981).
[CrossRef]

Külich, H. C.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
[CrossRef]

Laeri, F.

F. Laeri, T. Tschudi, H. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Marrakchi, A.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

Petrov, M. P.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Psaltis, D.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

Rupp, R. A.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
[CrossRef]

Shi, Y.

Tanguay, A. R.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

Tschudi, T.

F. Laeri, T. Tschudi, H. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Valley, G. C.

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Voit, E.

E. Voit, C. Zaldo, P. Günter, Opt. Lett. 11, 309 (1986).
[CrossRef] [PubMed]

E. Voit, in Electro-Optic and Photorefractive Materials, P. Günter, ed., Vol. 18 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1987), pp. 246–265.
[CrossRef]

Yu, J.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Zaldo, C.

Zha, M. Z.

Appl. Opt.

Appl. Phys.

A. Krumins, P. Günter, Appl. Phys. 19, 153 (1979).
[CrossRef]

Appl. Phys. B

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. A. Rupp, Appl. Phys. B 35, 17 (1984).
[CrossRef]

Opt. Commun.

P. Günter, Opt. Commun. 11, 285 (1974).
[CrossRef]

F. Laeri, T. Tschudi, H. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Opt. Eng.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

G. C. Valley, M. B. Klein, Opt. Eng. 22, 704 (1983).

Opt. Lett.

Phys. Rep.

P. Günter, Phys. Rep. 93, 199 (1982).
[CrossRef]

RCA Rev.

J. J. Amodei, RCA Rev. 32, 185 (1971).

Sov. J. Quantum Electron.

N. V. Kukhtarev, Sov. J. Quantum Electron. 11, 878 (1981).
[CrossRef]

Sov. Tech. Phys. Lett.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Other

E. Voit, in Electro-Optic and Photorefractive Materials, P. Günter, ed., Vol. 18 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1987), pp. 246–265.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a, Experimental configuration for anisotropic self-diffraction in a KNbO3 b plate. I+1 and I−1 are the intensities of the two writing beams creating the photoinduced grating. Isd is the intensity of the self-diffracted beam. b, Wave-vector diagram for anisotropic self-diffraction in a KNbO3 b plate. θ and ψ are the incident and diffraction angles, respectively, inside and θ′ and ψ′ those outside the crystal.

Fig. 2
Fig. 2

Experimental configuration for incoherent-to-coherent conversion by anisotropic self-diffraction in KNbO3. An incoherent input image projected into the crystal modulates the diffraction efficiency of the photoinduced grating and therefore transfers its information onto the coherent self-diffracted beam.

Fig. 3
Fig. 3

(a) Intensity of the self-diffracted beam for several coherent write intensities I0 as a function of the intensity of a homogeneous illumination Iinc of the crystal with a incoherent source. (b) Efficiency of self-diffraction as a function of the relative incoherent intensity Iinc/I0 calculated from the data of (a).

Fig. 4
Fig. 4

Example of (a) an original and (b) a converted image. The original size of the projected star in the crystal was 3 mm in diameter.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E s c ( r ) = [ E 0 sin ( K g x 1 ) , 0 , 0 ]
Δ ( 1 n 2 ) 13 ( x 1 ) = 2 r 131 E 0 sin ( K g x 1 ) .
K sd = k + 1 + K g = k 1 = 2 K g ,
I ( x 1 ) = I 0 [ 1 + m cos ( K g x i ) ] ,
I inc = ( x 1 , x 3 ) = I inc * f ( x 1 , x 3 ) ,
n ( x 1 , x 3 ) = n d + n 0 [ 1 + m cos ( K g x 1 ) ] + n inc f ( x 1 , x 3 ) .
n 0 , inc = I 0 , inc s 0 , inc N D γ R N A ,
E sc ( x 1 , x 3 ) = k T e n n ,
| f | K g ,
E sc = k T e K g m sin ( K g x 1 ) I inc s inc I 0 s 0 + 1 + m cos ( K g x 1 ) .
E sc 1 ( x 1 x 3 ) = 2 k T e K g m eff [ 1 ( 1 m eff 2 ) 1 / 2 ] sin ( K g x i ) ,
m eff = m 1 + I inc s inc I 0 s 0 f ( x 1 , x 3 )
η = I sd I + 1 = cos ψ cos θ sin 2 ( π δ d λ cos ψ ) ,

Metrics