Abstract

An internal rotation of the birefringence axes has been measured in a variety of polarization-holding fibers. The rotation of the axes causes coupling of the major-field components of the fundamental modes, which limits the polarization-extinction ratio in short lengths of birefringent fibers to −45 dB in some cases. A practical consequence of the rotation of the axes is a reduction of the polarization-holding ability of devices such as fiber couplers that are made with these fibers.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Brinkmeyer, W. Eichoff, Electron. Lett. 19, 996 (1983).
    [Crossref]
  2. I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
    [Crossref]
  3. R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [Crossref] [PubMed]
  4. S. C. Rashleigh, M. J. Marrone, Electron. Lett. 19, 679 (1983).
    [Crossref]
  5. M. P. Varnham, D. N. Payne, J. D. Love, Electron. Lett. 20, 55 (1984).
    [Crossref]
  6. F. P. Kapron, N. F. Borrelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
    [Crossref]
  7. R. H. Stolen, E. H. Turner, Appl. Opt. 19, 842 (1980).
    [Crossref] [PubMed]
  8. C. A. Villarruel, M. J. Marrone, N. J. Frigo, A. Dandridge in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1987), paper WP3.
  9. N. J. Frigo, IEEE J. Quantum Electron. QE-22, 2131 (1986).
    [Crossref]

1986 (1)

N. J. Frigo, IEEE J. Quantum Electron. QE-22, 2131 (1986).
[Crossref]

1984 (1)

M. P. Varnham, D. N. Payne, J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

1983 (2)

E. Brinkmeyer, W. Eichoff, Electron. Lett. 19, 996 (1983).
[Crossref]

S. C. Rashleigh, M. J. Marrone, Electron. Lett. 19, 679 (1983).
[Crossref]

1981 (1)

I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
[Crossref]

1980 (1)

1979 (1)

1972 (1)

F. P. Kapron, N. F. Borrelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[Crossref]

Borrelli, N. F.

F. P. Kapron, N. F. Borrelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[Crossref]

Brinkmeyer, E.

E. Brinkmeyer, W. Eichoff, Electron. Lett. 19, 996 (1983).
[Crossref]

Dandridge, A.

C. A. Villarruel, M. J. Marrone, N. J. Frigo, A. Dandridge in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1987), paper WP3.

Eichoff, W.

E. Brinkmeyer, W. Eichoff, Electron. Lett. 19, 996 (1983).
[Crossref]

Frigo, N. J.

N. J. Frigo, IEEE J. Quantum Electron. QE-22, 2131 (1986).
[Crossref]

C. A. Villarruel, M. J. Marrone, N. J. Frigo, A. Dandridge in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1987), paper WP3.

Kaminow, I. P.

I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
[Crossref]

Kapron, F. P.

F. P. Kapron, N. F. Borrelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[Crossref]

Keck, D. B.

F. P. Kapron, N. F. Borrelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[Crossref]

Love, J. D.

M. P. Varnham, D. N. Payne, J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

Marrone, M. J.

S. C. Rashleigh, M. J. Marrone, Electron. Lett. 19, 679 (1983).
[Crossref]

C. A. Villarruel, M. J. Marrone, N. J. Frigo, A. Dandridge in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1987), paper WP3.

Payne, D. N.

M. P. Varnham, D. N. Payne, J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

Rashleigh, S. C.

S. C. Rashleigh, M. J. Marrone, Electron. Lett. 19, 679 (1983).
[Crossref]

Simon, A.

Stolen, R. H.

Turner, E. H.

Ulrich, R.

Varnham, M. P.

M. P. Varnham, D. N. Payne, J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

Villarruel, C. A.

C. A. Villarruel, M. J. Marrone, N. J. Frigo, A. Dandridge in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1987), paper WP3.

Appl. Opt. (2)

Electron. Lett. (3)

E. Brinkmeyer, W. Eichoff, Electron. Lett. 19, 996 (1983).
[Crossref]

S. C. Rashleigh, M. J. Marrone, Electron. Lett. 19, 679 (1983).
[Crossref]

M. P. Varnham, D. N. Payne, J. D. Love, Electron. Lett. 20, 55 (1984).
[Crossref]

IEEE J. Quantum Electron. (3)

F. P. Kapron, N. F. Borrelli, D. B. Keck, IEEE J. Quantum Electron. QE-8, 222 (1972).
[Crossref]

I. P. Kaminow, IEEE J. Quantum Electron. QE-17, 15 (1981).
[Crossref]

N. J. Frigo, IEEE J. Quantum Electron. QE-22, 2131 (1986).
[Crossref]

Other (1)

C. A. Villarruel, M. J. Marrone, N. J. Frigo, A. Dandridge in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1987), paper WP3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Rotation of birefringence axes versus length along a fiber. ○, York Technology; △, 3M Corporation; □, Hitachi A; ▽, Hitachi B.

Fig. 2
Fig. 2

Rotation of birefringence axes (module 180°) versus length along a Corning fiber.

Fig. 3
Fig. 3

Geometrical representation of rotation of birefringence axes. Vector r represents the SOP; β represents birefringence. The rotation of β moves r off the locus of the linear SOP’s (equator). Inset: In the rotating frame, β is fixed and the effective birefringence is (β − 2τ).

Tables (1)

Tables Icon

Table 1 Polarization Properties of High-Birefringence Fibers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d r / d z = β × r ,
d β / d z = 2 τ × β .
d r / d z = ( β - 2 τ ) × r ,

Metrics