Abstract

A novel optical fiber is proposed that supports the lowest-order soliton despite the presence of optical loss. Group-velocity dispersion of this fiber decreases with distance, in accord with soliton attenuation that is due to the inherent optical loss of the fiber.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  2. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
    [CrossRef]
  3. N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
    [CrossRef]
  4. A. Hasegawa, Opt. Lett. 8, 650 (1983).
    [CrossRef] [PubMed]
  5. A. Hasegawa, Appl. Opt. 23, 3302 (1984).
    [CrossRef] [PubMed]
  6. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]
  7. K. Tajima, K. Washio, Opt. Lett. 10, 460 (1985).
    [CrossRef] [PubMed]
  8. H. Murata, N. Inagaki, IEEE J. Quantum Electron. QE-17, 835 (1981).
    [CrossRef]
  9. D. Marcuse, BellSyst. Tech. J. 49, 1665 (1970).
  10. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]

1986 (1)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

1985 (1)

1984 (1)

1983 (2)

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
[CrossRef]

A. Hasegawa, Opt. Lett. 8, 650 (1983).
[CrossRef] [PubMed]

1981 (2)

H. Murata, N. Inagaki, IEEE J. Quantum Electron. QE-17, 835 (1981).
[CrossRef]

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

1973 (1)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

1971 (1)

1970 (1)

D. Marcuse, BellSyst. Tech. J. 49, 1665 (1970).

Blow, K. J.

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
[CrossRef]

Doran, N. J.

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
[CrossRef]

Gloge, D.

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Hasegawa, A.

A. Hasegawa, Appl. Opt. 23, 3302 (1984).
[CrossRef] [PubMed]

A. Hasegawa, Opt. Lett. 8, 650 (1983).
[CrossRef] [PubMed]

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Inagaki, N.

H. Murata, N. Inagaki, IEEE J. Quantum Electron. QE-17, 835 (1981).
[CrossRef]

Islam, M. N.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Kodama, Y.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Marcuse, D.

D. Marcuse, BellSyst. Tech. J. 49, 1665 (1970).

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Murata, H.

H. Murata, N. Inagaki, IEEE J. Quantum Electron. QE-17, 835 (1981).
[CrossRef]

Tajima, K.

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Washio, K.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

BellSyst. Tech. J. (1)

D. Marcuse, BellSyst. Tech. J. 49, 1665 (1970).

IEEE J. Quantum Electron. (3)

H. Murata, N. Inagaki, IEEE J. Quantum Electron. QE-17, 835 (1981).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. QE-19, 1883 (1983).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) The lumped loss model of a lossy optical fiber. Differences in diameter indicate that the thinner fiber possesses less GVD. (b) Schematic illustration of the proposed optical fiber for solition propagation. The GVD of this fiber, which is a function of its core radius, decreases with distance.

Fig. 2
Fig. 2

GVD and effective core-radius variations of the proposed optical fiber. For simplicity, a linear relation between the core radius and the GVD, which may not be accurate, is assumed.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

i ( E z + γ E + k 1 E t ) + k 2 2 2 E t 2 - 1 2 n 2 n 0 k 0 E 2 E = 0 ,
i ( u z + γ u ) + 1 2 2 u t 2 + u 2 u = 0
t = ( t - k 1 z ) / τ ,
z = k 2 z / τ 2 ,
u = τ ( n 2 k 0 2 n 0 k 2 ) 1 / 2 E ,
γ = τ 2 γ / k 2 .
u 1 = e - i z / 2 sech t ,
t = ( t - k 1 z ) / τ ,
z = z / ζ ,
u = e γ z ( n 2 k 0 ζ 2 n 0 ) 1 / 2 E ,
γ = ζ γ ,
i u z + k 2 2 ζ τ 2 2 u t 2 + e - 2 γ z u 2 u = 0.
k 2 ( z ) = k 2 ( z = 0 ) exp [ - 2 γ z ] .
E P T 1.763 ( 2 n 0 k 2 n 2 k 0 ) 1 / 2 ,
k 2 ( z ) = a R 2 ( z ) exp ( - 2 γ z ) ,
i ( u z + 1 R d R d z u ) + k 2 2 ζ τ 2 2 u t 2 + e - 2 γ z u 2 u = 0 ,

Metrics