Abstract

The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flow field using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Joklik, J. W. Daily, Appl. Opt. 4158 (1982).
  2. M. Alden, P. Grafstrom, H. Lundberg, S. Svanberg, Opt. Lett. 8, 241 (1983).
    [CrossRef] [PubMed]
  3. K. P. Gross, R. L. McKenzie, Opt. Lett. 8, 368 (1983).
    [CrossRef] [PubMed]
  4. K. P. Gross, R. L. McKenzie, AIAA J. 23, 1985 (1986).
  5. R. Cattolica, D. Stephenson, Prog. Astronaut. Aeronaut. 95, 714 (1986).
  6. R. P. Lucht, N. M. Laurendeau, D. W. Sweeney, Appl. Opt. 21, 3729 (1982).
    [CrossRef] [PubMed]
  7. H. W. Leipmann, R. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).
  8. J. C. McDaniel, Prog. Astronaut. Aeronaut. 92, 107 (1984).
  9. J. D. Simmonds, J. T. Hougen, J. Res. Natl. Bur. Stand. 81A, 25 (1977).
  10. S. Gerstenkorn, P. Luc, Atlas du Spectre de la Molecule d’Iode (1982).

1986 (2)

K. P. Gross, R. L. McKenzie, AIAA J. 23, 1985 (1986).

R. Cattolica, D. Stephenson, Prog. Astronaut. Aeronaut. 95, 714 (1986).

1984 (1)

J. C. McDaniel, Prog. Astronaut. Aeronaut. 92, 107 (1984).

1983 (2)

1982 (2)

1977 (1)

J. D. Simmonds, J. T. Hougen, J. Res. Natl. Bur. Stand. 81A, 25 (1977).

Alden, M.

Cattolica, R.

R. Cattolica, D. Stephenson, Prog. Astronaut. Aeronaut. 95, 714 (1986).

Daily, J. W.

R. G. Joklik, J. W. Daily, Appl. Opt. 4158 (1982).

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du Spectre de la Molecule d’Iode (1982).

Grafstrom, P.

Gross, K. P.

K. P. Gross, R. L. McKenzie, AIAA J. 23, 1985 (1986).

K. P. Gross, R. L. McKenzie, Opt. Lett. 8, 368 (1983).
[CrossRef] [PubMed]

Hougen, J. T.

J. D. Simmonds, J. T. Hougen, J. Res. Natl. Bur. Stand. 81A, 25 (1977).

Joklik, R. G.

R. G. Joklik, J. W. Daily, Appl. Opt. 4158 (1982).

Laurendeau, N. M.

Leipmann, H. W.

H. W. Leipmann, R. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du Spectre de la Molecule d’Iode (1982).

Lucht, R. P.

Lundberg, H.

McDaniel, J. C.

J. C. McDaniel, Prog. Astronaut. Aeronaut. 92, 107 (1984).

McKenzie, R. L.

K. P. Gross, R. L. McKenzie, AIAA J. 23, 1985 (1986).

K. P. Gross, R. L. McKenzie, Opt. Lett. 8, 368 (1983).
[CrossRef] [PubMed]

Roshko, R.

H. W. Leipmann, R. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).

Simmonds, J. D.

J. D. Simmonds, J. T. Hougen, J. Res. Natl. Bur. Stand. 81A, 25 (1977).

Stephenson, D.

R. Cattolica, D. Stephenson, Prog. Astronaut. Aeronaut. 95, 714 (1986).

Svanberg, S.

Sweeney, D. W.

AIAA J. (1)

K. P. Gross, R. L. McKenzie, AIAA J. 23, 1985 (1986).

Appl. Opt. (2)

J. Res. Natl. Bur. Stand. (1)

J. D. Simmonds, J. T. Hougen, J. Res. Natl. Bur. Stand. 81A, 25 (1977).

Opt. Lett. (2)

Prog. Astronaut. Aeronaut. (2)

R. Cattolica, D. Stephenson, Prog. Astronaut. Aeronaut. 95, 714 (1986).

J. C. McDaniel, Prog. Astronaut. Aeronaut. 92, 107 (1984).

Other (2)

S. Gerstenkorn, P. Luc, Atlas du Spectre de la Molecule d’Iode (1982).

H. W. Leipmann, R. Roshko, Elements of Gasdynamics (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laval nozzle flow field used for temperature-measurement verification.

Fig. 2
Fig. 2

Predicted two-line temperatures in the Laval nozzle.

Fig. 3
Fig. 3

Measured and calculated spectra in the Laval nozzle.

Fig. 4
Fig. 4

Two-line temperature measurements in the Laval nozzle.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S f = C A 21 A 21 + Q V Δ ν D f 1 I N I 2 .
S f = C ( T / p 2 ) f 1 I N I 2 ,
N I 2 = f s N = f s p / k T .
f 1 = 2 ( 2 J + 1 ) θ r T exp [ - J ( J + 1 ) θ r T ] × exp ( - v θ v T ) [ 1 - exp ( - θ v T ) ] ,
S f = C ( 1 / p ) ( 2 J + 1 ) ( θ r / T ) exp [ - J ( J + 1 ) θ r / T ] × [ 1 - exp ( - θ v / T ) ] ,
S f 2 / S f 1 = A exp ( B / T ) ,
A = ( C 2 / C 1 ) ( 2 J 2 + 1 ) / ( 2 J 1 + 1 )
B = [ J 1 ( J 1 + 1 ) - J 2 ( J 2 + 1 ) ] θ r .
T = B / ln ( S f 2 / S f 1 A ) .
d x / x = ( - B / T ) ( d T / T ) .

Metrics