Abstract

We propose a new type of mechanism for enhanced optical nonlinearities and intrinsic optical bistability that relies on the combination of intrinsic feedback due to local field effects and excitonic resonances in semiconductor crystallites. These effects will be further enhanced by quantum confinement in small crystallites.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, Laser Focus 18(4), 79 (1982). For a comprehensive review of the optical bistability, see H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. D. A. B. Miller, J. Opt. Soc. Am. B 1, 857 (1984), and references therein.
    [CrossRef]
  3. J. A. Goldstone, E. Garmire, Phys. Rev. Lett. 53, 910 (1984).
    [CrossRef]
  4. I. Abram, A. Maruani, Phys. Rev. B 26, 4759 (1982).
    [CrossRef]
  5. C. C. Sung, C. M. Bowden, in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 241.
    [CrossRef]
  6. F. A. Hopf, C. M. Bowden, W. H. Louisel in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 361; Phys. Rev. A 29, 2591 (1984).
    [CrossRef]
  7. See R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
    [CrossRef]
  8. K. C. Rustagi, C. Flytzanis, Opt. Lett. 9, 344 (1984).
    [CrossRef] [PubMed]
  9. P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
    [CrossRef]
  10. D. S. Chemla, D. A. B. Miller, J. Opt. Am. B 2, 1155 (1985).
    [CrossRef]
  11. C. F. Bottcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. I, Chap. II.
  12. A. L. Efros, A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).
  13. H. Haug, S. Schmitt-Rink, Prog. Quantum Electr. 9, 1 (1984).
    [CrossRef]
  14. S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
    [CrossRef]
  15. S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, to be submitted to Phys. Rev.
  16. L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  17. U. Fano, J. W. Cooper, Phys. Rev. 137, A1364 (1965).
    [CrossRef]
  18. Intensity-dependent optical hyteresis of the resonant frequency of Mie resonances of optically levitated dielectric spheres, which is due to thermal nonlinearities, has been observed by A. Ashkin, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).
  19. R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys. 79, 1086 (1983); R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 82, 552 (1985).
    [CrossRef]
  20. J. Warnock, D. D. Awscholom, Phys. Rev. B 32, 5529 (1985).
    [CrossRef]
  21. S. Yoshida, T. Yamagushi, A. Kinbara, J. Opt. Soc. Am. 61, 62 (1971).
    [CrossRef]
  22. K. M. Leung, Phys. Rev. A 33, 2461 (1986).
    [CrossRef] [PubMed]

1986 (1)

K. M. Leung, Phys. Rev. A 33, 2461 (1986).
[CrossRef] [PubMed]

1985 (4)

J. Warnock, D. D. Awscholom, Phys. Rev. B 32, 5529 (1985).
[CrossRef]

P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
[CrossRef]

D. S. Chemla, D. A. B. Miller, J. Opt. Am. B 2, 1155 (1985).
[CrossRef]

S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
[CrossRef]

1984 (4)

D. A. B. Miller, J. Opt. Soc. Am. B 1, 857 (1984), and references therein.
[CrossRef]

J. A. Goldstone, E. Garmire, Phys. Rev. Lett. 53, 910 (1984).
[CrossRef]

K. C. Rustagi, C. Flytzanis, Opt. Lett. 9, 344 (1984).
[CrossRef] [PubMed]

H. Haug, S. Schmitt-Rink, Prog. Quantum Electr. 9, 1 (1984).
[CrossRef]

1983 (1)

R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys. 79, 1086 (1983); R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 82, 552 (1985).
[CrossRef]

1982 (3)

D. A. B. Miller, Laser Focus 18(4), 79 (1982). For a comprehensive review of the optical bistability, see H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

I. Abram, A. Maruani, Phys. Rev. B 26, 4759 (1982).
[CrossRef]

A. L. Efros, A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

1971 (1)

1965 (1)

U. Fano, J. W. Cooper, Phys. Rev. 137, A1364 (1965).
[CrossRef]

Abram, I.

I. Abram, A. Maruani, Phys. Rev. B 26, 4759 (1982).
[CrossRef]

Allen, L.

L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Ashkin, A.

Intensity-dependent optical hyteresis of the resonant frequency of Mie resonances of optically levitated dielectric spheres, which is due to thermal nonlinearities, has been observed by A. Ashkin, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

Awscholom, D. D.

J. Warnock, D. D. Awscholom, Phys. Rev. B 32, 5529 (1985).
[CrossRef]

Bottcher, C. F.

C. F. Bottcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. I, Chap. II.

Bowden, C. M.

C. C. Sung, C. M. Bowden, in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 241.
[CrossRef]

F. A. Hopf, C. M. Bowden, W. H. Louisel in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 361; Phys. Rev. A 29, 2591 (1984).
[CrossRef]

Brus, L. E.

R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys. 79, 1086 (1983); R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 82, 552 (1985).
[CrossRef]

Chemla, D. S.

D. S. Chemla, D. A. B. Miller, J. Opt. Am. B 2, 1155 (1985).
[CrossRef]

S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
[CrossRef]

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, to be submitted to Phys. Rev.

Cooper, J. W.

U. Fano, J. W. Cooper, Phys. Rev. 137, A1364 (1965).
[CrossRef]

Eberly, J. H.

L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Efros, A. L.

A. L. Efros, A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

A. L. Efros, A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

Fano, U.

U. Fano, J. W. Cooper, Phys. Rev. 137, A1364 (1965).
[CrossRef]

Flytzanis, C.

P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
[CrossRef]

K. C. Rustagi, C. Flytzanis, Opt. Lett. 9, 344 (1984).
[CrossRef] [PubMed]

Garmire, E.

J. A. Goldstone, E. Garmire, Phys. Rev. Lett. 53, 910 (1984).
[CrossRef]

Goldstone, J. A.

J. A. Goldstone, E. Garmire, Phys. Rev. Lett. 53, 910 (1984).
[CrossRef]

Haug, H.

H. Haug, S. Schmitt-Rink, Prog. Quantum Electr. 9, 1 (1984).
[CrossRef]

Hopf, F. A.

F. A. Hopf, C. M. Bowden, W. H. Louisel in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 361; Phys. Rev. A 29, 2591 (1984).
[CrossRef]

Kinbara, A.

Leung, K. M.

K. M. Leung, Phys. Rev. A 33, 2461 (1986).
[CrossRef] [PubMed]

Louisel, W. H.

F. A. Hopf, C. M. Bowden, W. H. Louisel in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 361; Phys. Rev. A 29, 2591 (1984).
[CrossRef]

Maruani, A.

I. Abram, A. Maruani, Phys. Rev. B 26, 4759 (1982).
[CrossRef]

Miller, D. A. B.

S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
[CrossRef]

D. S. Chemla, D. A. B. Miller, J. Opt. Am. B 2, 1155 (1985).
[CrossRef]

D. A. B. Miller, J. Opt. Soc. Am. B 1, 857 (1984), and references therein.
[CrossRef]

D. A. B. Miller, Laser Focus 18(4), 79 (1982). For a comprehensive review of the optical bistability, see H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, to be submitted to Phys. Rev.

Nakahara, S.

R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys. 79, 1086 (1983); R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 82, 552 (1985).
[CrossRef]

Ricard, D.

P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
[CrossRef]

Rossetti, R.

R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys. 79, 1086 (1983); R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 82, 552 (1985).
[CrossRef]

Roussingnol, P.

P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
[CrossRef]

Rustagi, K. C.

P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
[CrossRef]

K. C. Rustagi, C. Flytzanis, Opt. Lett. 9, 344 (1984).
[CrossRef] [PubMed]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
[CrossRef]

H. Haug, S. Schmitt-Rink, Prog. Quantum Electr. 9, 1 (1984).
[CrossRef]

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, to be submitted to Phys. Rev.

Sung, C. C.

C. C. Sung, C. M. Bowden, in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 241.
[CrossRef]

Warnock, J.

J. Warnock, D. D. Awscholom, Phys. Rev. B 32, 5529 (1985).
[CrossRef]

Yamagushi, T.

Yoshida, S.

J. Chem. Phys. (1)

R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys. 79, 1086 (1983); R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 82, 552 (1985).
[CrossRef]

J. Opt. Am. B (1)

D. S. Chemla, D. A. B. Miller, J. Opt. Am. B 2, 1155 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Focus (1)

D. A. B. Miller, Laser Focus 18(4), 79 (1982). For a comprehensive review of the optical bistability, see H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

Opt. Commun. (1)

P. Roussingnol, D. Ricard, K. C. Rustagi, C. Flytzanis, Opt. Commun. 55, 143 (1985).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, J. W. Cooper, Phys. Rev. 137, A1364 (1965).
[CrossRef]

Phys. Rev. A (1)

K. M. Leung, Phys. Rev. A 33, 2461 (1986).
[CrossRef] [PubMed]

Phys. Rev. B (3)

J. Warnock, D. D. Awscholom, Phys. Rev. B 32, 5529 (1985).
[CrossRef]

S. Schmitt-Rink, D. S. Chemla, D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
[CrossRef]

I. Abram, A. Maruani, Phys. Rev. B 26, 4759 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Goldstone, E. Garmire, Phys. Rev. Lett. 53, 910 (1984).
[CrossRef]

Prog. Quantum Electr. (1)

H. Haug, S. Schmitt-Rink, Prog. Quantum Electr. 9, 1 (1984).
[CrossRef]

Sov. Phys. Semicond. (1)

A. L. Efros, A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

Other (7)

C. F. Bottcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. I, Chap. II.

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, to be submitted to Phys. Rev.

L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

Intensity-dependent optical hyteresis of the resonant frequency of Mie resonances of optically levitated dielectric spheres, which is due to thermal nonlinearities, has been observed by A. Ashkin, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

C. C. Sung, C. M. Bowden, in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 241.
[CrossRef]

F. A. Hopf, C. M. Bowden, W. H. Louisel in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, S. L. McCall, eds. (Plenum, New York, 1984), p. 361; Phys. Rev. A 29, 2591 (1984).
[CrossRef]

See R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Universal shape of the local intensity factor profile near a Lorentzian resonance. As shown in the upper part of the figure, far from resonance (on both sides) the field in the particle is smaller than outside; near the resonance on one side the field is concentrated in the particle, whereas on the other side the field cannot penetrate the particle.

Fig. 2
Fig. 2

Plots of the frequency dependence of the real and imaginary parts of the dielectric constant for J = 20 (heavy lines) and for J = 0 (light lines). The material parameters have the rounded-up values of CdS: = 6, Γ = 0.4 meV, Ω = 2.555 eV, and β = 40 (corresponding to an oscillator strength Γβ = 1.6 × 10−1).

Fig. 3
Fig. 3

Plots of (a) the imaginary part of the dielectric constant, of (b) the local intensity factor, and of (c) the imaginary part of the effective dielectric constant in a CdS spherical QD as a function of the light intensity normalized to the saturation intensity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F = f 2 = A - 2 ( 1 - 1 + A - 1 ) 2 + 2 2 ,
= + β δ + i 1 + δ 2 + J ,
F = F 1 + δ 2 1 + ( δ - 2 δ 0 ) 2 ,
= + β δ + i 1 + δ 2 A - 2 J ( 1 - 1 + A - 1 ) 2 + 2 2 .

Metrics