Abstract

A mathematical model for incorporating controllable nonlinearity in the correlation domain of a conventional associative memory is described. Such a mechanism provides the flexibility of rapidly and arbitrarily changing the strengths of the stored states in an associative memory. Such a feature corresponds to shifting of attention in psychological terms. This attentive associative memory can be implemented optically. Results obtained with computer simulation and a design for a compact optical implementation are discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, N. Farhat, Opt. Lett. 10, 98 (1985).
    [CrossRef] [PubMed]
  2. A. D. Fisher, C. L. Giles, J. N. Lee, in Technical Digest of the Optical Computing Topical Meeting (Optical Society of America, Washington, D.C., 1985), paper WB4.
  3. J. Opt. Soc. Am. A, 2(13), P47–P48 (1985).
  4. T. Kohonen, Self-Organization and Associative Memory, Vol. 8 of Springer Series in Information Sciences (Springer-Verlag, Berlin, 1984).
  5. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).
    [CrossRef] [PubMed]
  6. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” submitted to Opt. Lett.
  7. This connection was pointed out to the authors by J. P. Sage, MIT Lincoln Laboratory, Lexington, Mass. 02173 (personal communication).

1985 (2)

D. Psaltis, N. Farhat, Opt. Lett. 10, 98 (1985).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A, 2(13), P47–P48 (1985).

1982 (1)

J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).
[CrossRef] [PubMed]

Dunning, G. J.

B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” submitted to Opt. Lett.

Farhat, N.

Fisher, A. D.

A. D. Fisher, C. L. Giles, J. N. Lee, in Technical Digest of the Optical Computing Topical Meeting (Optical Society of America, Washington, D.C., 1985), paper WB4.

Giles, C. L.

A. D. Fisher, C. L. Giles, J. N. Lee, in Technical Digest of the Optical Computing Topical Meeting (Optical Society of America, Washington, D.C., 1985), paper WB4.

Hopfield, J. J.

J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).
[CrossRef] [PubMed]

Kohonen, T.

T. Kohonen, Self-Organization and Associative Memory, Vol. 8 of Springer Series in Information Sciences (Springer-Verlag, Berlin, 1984).

Lee, J. N.

A. D. Fisher, C. L. Giles, J. N. Lee, in Technical Digest of the Optical Computing Topical Meeting (Optical Society of America, Washington, D.C., 1985), paper WB4.

Marom, E.

B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” submitted to Opt. Lett.

Owechko, Y.

B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” submitted to Opt. Lett.

Psaltis, D.

Sage, J. P.

This connection was pointed out to the authors by J. P. Sage, MIT Lincoln Laboratory, Lexington, Mass. 02173 (personal communication).

Soffer, B. H.

B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” submitted to Opt. Lett.

J. Opt. Soc. Am. A, (1)

J. Opt. Soc. Am. A, 2(13), P47–P48 (1985).

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).
[CrossRef] [PubMed]

Other (4)

B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” submitted to Opt. Lett.

This connection was pointed out to the authors by J. P. Sage, MIT Lincoln Laboratory, Lexington, Mass. 02173 (personal communication).

A. D. Fisher, C. L. Giles, J. N. Lee, in Technical Digest of the Optical Computing Topical Meeting (Optical Society of America, Washington, D.C., 1985), paper WB4.

T. Kohonen, Self-Organization and Associative Memory, Vol. 8 of Springer Series in Information Sciences (Springer-Verlag, Berlin, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Block diagram of an optical attentive associative memory.

Fig. 2
Fig. 2

Compact optical system implementation of optical attentive associative memory. The cross-hatched stripes correspond to detectors, the open stripes correspond to modulators, and the boxes labeled E represent an electronic nonlinear amplifier circuit. The data are encoded on a film mask or a real-time mask.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

M = v ( i ) v ( i ) T , recording , v = M v , retrieval ,
v j = k M j k v k ,
v j = k [ i v j ( i ) v k ( i ) ] v k .
v j = i v j ( i ) F 1 ( i ) [ k v k ( i ) v k ] .
A 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 , B 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 , C 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 , D 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1.
A * A = B * B = C * C = D * D = 8 , A * B = A * C = A * D = B * C = B * D = C * D = 4.
Input vector 1 1 0 _ 1 0 0 0 0 0 _ 1 1 0 _ 0 0 0 0 , Retrieved vector 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 .
Input vector 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 , Retrieved vector 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 .

Metrics