Abstract

Nonlinear pulse propagation is investigated in the neighborhood of the zero-dispersion wavelength in monomode fibers. When the amplitude is sufficiently large to generate breathers (N > 1 solitons), it is found that the pulses break apart if λλ0 is sufficiently small, owing to the third-order dispersion. Here λ0 denotes the zero-dispersion wavelength. By contrast, the solitary-wave (N = 1) solution appears well behaved for arbitrary λλ0. Implications for communication systems and pulse compression are discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. Tappert, Appl. Phys Lett. 23, (1973).
  2. V. E. Zakharov, A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].
  3. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  4. N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
    [CrossRef]
  5. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
    [CrossRef]
  6. K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).
    [CrossRef] [PubMed]
  7. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  8. P. L. Chu, C. Desem, Electron. Lett. 21, 228 (1985).
    [CrossRef]
  9. D. Marcuse, Appl. Opt. 19, 1653 (1980).
    [CrossRef] [PubMed]
  10. D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
    [CrossRef]
  11. T. R. Taha, M. J. Ablowitz, J. Comp. Phys. 55, 203 (1984).
    [CrossRef]
  12. K. J. Blow, N. J. Doran, E. Cummins, Opt. Commun. 48, 181 (1983).
    [CrossRef]
  13. G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
    [CrossRef] [PubMed]
  14. L. F. Mollenauer, R. H. Stolen, Opt. Lett. 9, 13 (1984).
    [CrossRef] [PubMed]
  15. L. F. Mollenauer, AT&T Bell Laboratories, Holmdel, N.J. 07733 (personal communication).

1986 (1)

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

1985 (2)

1984 (2)

L. F. Mollenauer, R. H. Stolen, Opt. Lett. 9, 13 (1984).
[CrossRef] [PubMed]

T. R. Taha, M. J. Ablowitz, J. Comp. Phys. 55, 203 (1984).
[CrossRef]

1983 (3)

K. J. Blow, N. J. Doran, E. Cummins, Opt. Commun. 48, 181 (1983).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

1982 (1)

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

1981 (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

1980 (2)

D. Marcuse, Appl. Opt. 19, 1653 (1980).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1973 (1)

A. Hasegawa, F. Tappert, Appl. Phys Lett. 23, (1973).

1971 (1)

V. E. Zakharov, A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

Ablowitz, M. J.

T. R. Taha, M. J. Ablowitz, J. Comp. Phys. 55, 203 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Blow, K. J.

K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, E. Cummins, Opt. Commun. 48, 181 (1983).
[CrossRef]

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

Chu, P. L.

P. L. Chu, C. Desem, Electron. Lett. 21, 228 (1985).
[CrossRef]

Cummins, E.

K. J. Blow, N. J. Doran, E. Cummins, Opt. Commun. 48, 181 (1983).
[CrossRef]

Desem, C.

P. L. Chu, C. Desem, Electron. Lett. 21, 228 (1985).
[CrossRef]

Doran, N. J.

K. J. Blow, N. J. Doran, B. P. Nelson, Opt. Lett. 10, 393 (1985).
[CrossRef] [PubMed]

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

K. J. Blow, N. J. Doran, E. Cummins, Opt. Commun. 48, 181 (1983).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hasegawa, A.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

A. Hasegawa, F. Tappert, Appl. Phys Lett. 23, (1973).

Hermansson, B.

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

Kodama, Y.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Marcuse, D.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, Opt. Lett. 9, 13 (1984).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

L. F. Mollenauer, AT&T Bell Laboratories, Holmdel, N.J. 07733 (personal communication).

Nelson, B. P.

Potasek, M. J.

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Shabat, A. B.

V. E. Zakharov, A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

Stolen, R. H.

Taha, T. R.

T. R. Taha, M. J. Ablowitz, J. Comp. Phys. 55, 203 (1984).
[CrossRef]

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys Lett. 23, (1973).

Tomlinson, W. J.

Yevick, D.

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

Zakharov, V. E.

V. E. Zakharov, A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

Appl. Opt. (1)

Appl. Phys Lett. (1)

A. Hasegawa, F. Tappert, Appl. Phys Lett. 23, (1973).

Electron. Lett. (1)

P. L. Chu, C. Desem, Electron. Lett. 21, 228 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. J. Doran, K. J. Blow, IEEE J. Quantum Electron. 19, 1883 (1983).
[CrossRef]

J. Comp. Phys. (1)

T. R. Taha, M. J. Ablowitz, J. Comp. Phys. 55, 203 (1984).
[CrossRef]

Opt. Commun. (2)

K. J. Blow, N. J. Doran, E. Cummins, Opt. Commun. 48, 181 (1983).
[CrossRef]

D. Yevick, B. Hermansson, Opt. Commun. 47, 101 (1982).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 33, 1765 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Proc. IEEE (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

V. E. Zakharov, A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

Other (1)

L. F. Mollenauer, AT&T Bell Laboratories, Holmdel, N.J. 07733 (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The amplitude in frequency space of the one soliton with β = 0.1 at (a) ξ = 0.0, (b) ξ = 5π. A resonance peak is seen at (ωω0)τ ≈ 1/2β.

Fig. 2
Fig. 2

Breakup of a two-breather at β = 0.026. The pulse at different values of ξ is normalized to the same height for comparison.

Fig. 3
Fig. 3

The separation between the constituent solitons of a two-breather plotted versus distance traveled along the fiber at (a) β = 0.02 (below the threshold value), (b) β = 0.026 (above the threshold value). In (a) the separation oscillates, while in (b) the separation increases linearly with ξ after the first oscillation.

Tables (1)

Tables Icon

Table 1 Threshold Values of β0 for the Two-Breather and the Three-Breather

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i ( ϕ z + γ ϕ + k ϕ t ) - 1 2 k 2 ϕ t 2 - 1 6 i k 3 ϕ t 3 + ω 0 n 2 2 c ϕ 2 ϕ = 0 ,
s = ( t - k z ) / τ , ξ = k z / τ 2 , q = τ ( ω 0 n 2 2 k c ) 1 / 2 ,
i q ξ ± 1 2 2 q s 2 + q q 2 = - i Γ q + i β 3 q s 3 ,
P 0 = 0 n c k λ S 2 π n 2 τ 2 ,
k = 87.5 × [ 1.27 - λ ( μ m ) ] psec 2 / km , β = 3.5 × 10 - 4 [ λ ( μ m ) - 0.86 ] τ ( psec ) [ λ ( μ m ) - 1.27 ] .

Metrics