Abstract

A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Whitten, J. M. Ramsey, Opt. Lett. 9, 44 (1984).
    [CrossRef] [PubMed]
  2. F. C. Jahoda, P. G. Weber, J. Feinberg, Opt. Lett. 9, 362 (1984).
    [CrossRef] [PubMed]
  3. J. Feinberg, G. D. Bacher, Opt. Lett. 9, 420 (1984).
    [CrossRef] [PubMed]
  4. J. M. Ramsey, W. B. Whitten, Opt. Lett. 10, 362 (1985).
    [CrossRef] [PubMed]
  5. J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
    [CrossRef]
  6. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  7. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  8. J. M. Ramsey, W. B. Whitten, Anal. Chem. 56, 2979 (1984).
    [CrossRef]
  9. M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
    [CrossRef]
  10. K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
    [CrossRef]
  11. M. Cronin-Golomb, G. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. (to be published). Although the temperature of the tetragonal to orthorhombic phase transition is usually published as 5°C, we have found that the transition temperature in our crystals is closer to 9°C.

1985 (2)

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

J. M. Ramsey, W. B. Whitten, Opt. Lett. 10, 362 (1985).
[CrossRef] [PubMed]

1984 (6)

K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. M. Ramsey, W. B. Whitten, Anal. Chem. 56, 2979 (1984).
[CrossRef]

W. B. Whitten, J. M. Ramsey, Opt. Lett. 9, 44 (1984).
[CrossRef] [PubMed]

F. C. Jahoda, P. G. Weber, J. Feinberg, Opt. Lett. 9, 362 (1984).
[CrossRef] [PubMed]

J. Feinberg, G. D. Bacher, Opt. Lett. 9, 420 (1984).
[CrossRef] [PubMed]

1982 (2)

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

J. Feinberg, Opt. Lett. 7, 486 (1982).
[CrossRef] [PubMed]

Bacher, G. D.

Bar-Chaim, N.

K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

M. Cronin-Golomb, G. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. (to be published). Although the temperature of the tetragonal to orthorhombic phase transition is usually published as 5°C, we have found that the transition temperature in our crystals is closer to 9°C.

Feinberg, J.

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Jahoda, F. C.

Lau, K. Y.

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
[CrossRef]

Rakuljic, G.

M. Cronin-Golomb, G. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. (to be published). Although the temperature of the tetragonal to orthorhombic phase transition is usually published as 5°C, we have found that the transition temperature in our crystals is closer to 9°C.

Ramsey, J. M.

Ury, I.

K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
[CrossRef]

Weber, P. G.

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Whitten, W. B.

Yariv, A.

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

M. Cronin-Golomb, G. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. (to be published). Although the temperature of the tetragonal to orthorhombic phase transition is usually published as 5°C, we have found that the transition temperature in our crystals is closer to 9°C.

Anal. Chem. (1)

J. M. Ramsey, W. B. Whitten, Anal. Chem. 56, 2979 (1984).
[CrossRef]

Appl. Phys. Lett. (3)

M. Cronin-Golomb, K. Y. Lau, A. Yariv, Appl. Phys. Lett. 47, 567 (1985).
[CrossRef]

K. Y. Lau, N. Bar-Chaim, I. Ury, A. Yariv, Appl. Phys. Lett. 45, 316 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Opt. Lett. (5)

Other (1)

M. Cronin-Golomb, G. Rakuljic, A. Yariv, Proc. Soc. Photo-Opt. Instrum. Eng. (to be published). Although the temperature of the tetragonal to orthorhombic phase transition is usually published as 5°C, we have found that the transition temperature in our crystals is closer to 9°C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of experiment showing frequency scanning in a GaAlAs laser with photorefractive phase-conjugate feedback.

Fig. 2
Fig. 2

Center frequency of diode-laser spectrum versus transverse position of the feedback beam in the crystal with respect to the position of the incident beam. Positive displacement corresponds to counterclockwise rotation of the adjustable-feedback mirror. Different data point forms (crosses, circles, etc.) correspond to different experimental runs.

Fig. 3
Fig. 3

Laser output intensity (dashed line) and center frequency (solid line) during several consecutive repetitive (a) red-shifting and (b) blue-shifting scans.

Metrics