Abstract

This Letter describes photochemical effects observed by using 205-nm, two-photon-excited fluorescence spectroscopy to measure the atomic-hydrogen concentration in atmospheric-pressure hydrogen–oxygen flames. We found that the 205-nm radiation photolyzed water produced in the flame, forming atomic hydrogen in concentrations higher than those naturally present in lean flames and leading to erroneous concentration measurements. UV excitation of molecular oxygen transitions near 205 nm is also discussed; such excitation, followed by rapid predissociation to produce atomic oxygen, may also affect some flame measurements.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. M. Goldsmith, N. M. Laurendeau, Appl. Opt. 25, 276 (1986), and references therein.
    [Crossref] [PubMed]
  2. A. W. Miziolek, M. A. DeWilde, Opt. Lett. 7, 390 (1984).
    [Crossref]
  3. M. Aldén, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
    [Crossref]
  4. M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205 (1984).
    [Crossref]
  5. J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
    [Crossref]
  6. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, Opt. Lett. 8, 365 (1983).
    [Crossref] [PubMed]
  7. J. E. M. Goldsmith, R. J. M. Anderson, Opt. Lett. 11, 67 (1986).
    [Crossref] [PubMed]
  8. This burner was purchased from McKenna Products, Pittsburg, Calif. 94565.
  9. J. E. M. Goldsmith, Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.
  10. J. E. M. Goldsmith, Opt. Lett. 10, 116 (1985).
    [Crossref] [PubMed]
  11. B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
    [Crossref]
  12. K. Watanabe, M. Zelikoff, J. Opt. Soc. Am. 43, 753 (1953).
    [Crossref]
  13. P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
    [Crossref]

1986 (2)

1985 (2)

J. E. M. Goldsmith, Opt. Lett. 10, 116 (1985).
[Crossref] [PubMed]

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

1984 (2)

A. W. Miziolek, M. A. DeWilde, Opt. Lett. 7, 390 (1984).
[Crossref]

M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205 (1984).
[Crossref]

1983 (1)

1982 (1)

M. Aldén, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[Crossref]

1981 (1)

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
[Crossref]

1979 (1)

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

1953 (1)

Aldén, M.

M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205 (1984).
[Crossref]

M. Aldén, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[Crossref]

Andersen, P.

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

Anderson, R. J. M.

Beushausen, V.

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

Bokor, J.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
[Crossref]

Carver, J. H.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

DeWilde, M. A.

A. W. Miziolek, M. A. DeWilde, Opt. Lett. 7, 390 (1984).
[Crossref]

Edner, H.

M. Aldén, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[Crossref]

Freeman, R. R.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
[Crossref]

Gies, H. P. F.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

Goldsmith, J. E. M.

Häusler, D.

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

Hobbs, T. I.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

King, G. B.

Laurendeau, N. M.

Lewis, B. R.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

Lucht, R. P.

Lülf, H. W.

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

McCoy, D. G.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

Miziolek, A. W.

A. W. Miziolek, M. A. DeWilde, Opt. Lett. 7, 390 (1984).
[Crossref]

Rothe, E. W.

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

Salmon, J. T.

Storz, R. H.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
[Crossref]

Svanberg, S.

M. Aldén, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[Crossref]

Sweeney, D. W.

Wallin, S.

M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205 (1984).
[Crossref]

Watanabe, K.

Wendt, W.

M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205 (1984).
[Crossref]

White, J. C.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
[Crossref]

Zelikoff, M.

Appl. Opt. (1)

Appl. Phys. B (2)

M. Aldén, H. Edner, S. Svanberg, Appl. Phys. B 29, 93 (1982).
[Crossref]

M. Aldén, S. Wallin, W. Wendt, Appl. Phys. B 33, 205 (1984).
[Crossref]

J. Chem. Phys. (1)

P. Andersen, V. Beushausen, D. Häusler, H. W. Lülf, E. W. Rothe, J. Chem. Phys. 83, 1429 (1985).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979), and references therein.
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, Phys. Rev. A 24, 612 (1981).
[Crossref]

Other (2)

This burner was purchased from McKenna Products, Pittsburg, Calif. 94565.

J. E. M. Goldsmith, Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Atomic-hydrogen concentration profiles in a lean (equivalence ratio 0.8), atmospheric-pressure hydrogen–oxygen flame. The solid curve (absolute concentration) was calculated from the measured OH concentration, and the filled circles were measured by using resonant multiphoton optogalvanic spectroscopy (see Ref. 9). Two-photon-excited fluorescence spectroscopy was used to measure the relative profiles represented by the squares (interference-filter fluorescence isolation) and triangles (spectrometer fluorescence isolation). Inset: Intensity dependences of the fluorescence signals in the lean and in a rich hydrogen–oxygen flame.

Fig. 2
Fig. 2

(a) Fluorescence excitation spectrum in a rich hydrogen–oxygen flame, detecting the 656-nm emission through an interference filter. (b) Similar to (a), but in a lean hydrogen–oxygen flame. The observed signal levels were lower in the lean flame than in the rich flame, so (b) is plotted with a different vertical scale from (a). (c) Fluorescence excitation spectrum in the lean hydrogen–oxygen flame made by using broadband (300–370-nm) UV detection. (d) Absorption measurements in a lean (bottom trace) and a rich (middle trace) hydrogen–oxygen flame and in a room-temperature oxygen flow (top trace).

Fig. 3
Fig. 3

Fluorescence excitation spectra of the OH (0, 0) P1(5) transition with and without an additional 205-nm beam present. Inset: Intensity dependence of the enhancement of the OH fluorescence signal produced by the 205-nm beam.

Metrics