Abstract

Lock-in behavior around zero rotation rate has been observed in a closed-loop passive ring resonator gyroscope. This behavior is due to backscattering within the resonator, as in the case of a ring laser gyro. Several nonmechanical techniques for the elimination of the lock-in behavior in a passive gyroscope are demonstrated.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977); S. Ezekiel, J. A. Cole, J. Harrison, G. Sanders, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
    [CrossRef]
  2. G. A Sanders, M. G. Prentiss, S. Ezekiel, Opt. Lett. 11, 569 (1981).
    [CrossRef]
  3. F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. 1, pp. 133–200.
  4. Provided by Litton Guidance and Control Systems.
  5. M. Hereld, D. Z. Anderson, Proc. Soc. Photo-Opt. Instrum. Eng. 487, 33 (1984).
  6. T. J. Hutchings, D. C. Stjern, Proc. IEEE National Aerospace and Electronics Conference 1, 549 (1978).
  7. R. E. Meyer, S. Ezekiel, D. W. Stowe, V. J. Tekippe, Opt. Lett. 8, 644 (1983).
    [CrossRef] [PubMed]

1984 (1)

M. Hereld, D. Z. Anderson, Proc. Soc. Photo-Opt. Instrum. Eng. 487, 33 (1984).

1983 (1)

1981 (1)

1978 (1)

T. J. Hutchings, D. C. Stjern, Proc. IEEE National Aerospace and Electronics Conference 1, 549 (1978).

1977 (1)

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977); S. Ezekiel, J. A. Cole, J. Harrison, G. Sanders, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
[CrossRef]

Anderson, D. Z.

M. Hereld, D. Z. Anderson, Proc. Soc. Photo-Opt. Instrum. Eng. 487, 33 (1984).

Aronowitz, F.

F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. 1, pp. 133–200.

Balsamo, S. R.

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977); S. Ezekiel, J. A. Cole, J. Harrison, G. Sanders, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
[CrossRef]

Ezekiel, S.

R. E. Meyer, S. Ezekiel, D. W. Stowe, V. J. Tekippe, Opt. Lett. 8, 644 (1983).
[CrossRef] [PubMed]

G. A Sanders, M. G. Prentiss, S. Ezekiel, Opt. Lett. 11, 569 (1981).
[CrossRef]

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977); S. Ezekiel, J. A. Cole, J. Harrison, G. Sanders, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
[CrossRef]

Hereld, M.

M. Hereld, D. Z. Anderson, Proc. Soc. Photo-Opt. Instrum. Eng. 487, 33 (1984).

Hutchings, T. J.

T. J. Hutchings, D. C. Stjern, Proc. IEEE National Aerospace and Electronics Conference 1, 549 (1978).

Meyer, R. E.

Prentiss, M. G.

Sanders, G. A

Stjern, D. C.

T. J. Hutchings, D. C. Stjern, Proc. IEEE National Aerospace and Electronics Conference 1, 549 (1978).

Stowe, D. W.

Tekippe, V. J.

Appl. Phys. Lett. (1)

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977); S. Ezekiel, J. A. Cole, J. Harrison, G. Sanders, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE National Aerospace and Electronics Conference (1)

T. J. Hutchings, D. C. Stjern, Proc. IEEE National Aerospace and Electronics Conference 1, 549 (1978).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Hereld, D. Z. Anderson, Proc. Soc. Photo-Opt. Instrum. Eng. 487, 33 (1984).

Other (2)

F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. 1, pp. 133–200.

Provided by Litton Guidance and Control Systems.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram for passive ring resonator gyroscope. E/O, electro-optic phase modulator; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Demonstration of lock-in behavior in passive resonator gyro: a, applied sinusoidal rotation (Ω) versus time; b, corresponding frequency difference Δf; c, Δf corresponding to a sinusoid injected at A; d, ramp injected at A; e, corresponding Δf. (Vertical scale: c and e same as b; d same as a.)

Fig. 3
Fig. 3

Oscillatory nonreciprocal resonance shift caused by backscattering without and with phase modulation.

Fig. 4
Fig. 4

Δf versus time showing the elimination of lock-in by a, phase modulation using E/O and b, frequency modulation using VCO 2. (Vertical scale same as in Fig. 2b.)

Fig. 5
Fig. 5

Elimination of lock-in by frequency modulation using servo 2 with a, small modulation excursion and b, large modulation excursion. (Vertical scale same as in Fig. 2b.)

Fig. 6
Fig. 6

Elimination of lock-in by tailoring the response of the secondary loop. (Vertical scale same as in Fig. 2b.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f 1 - f 2 = 4 A λ P Ω ,
Δ f = 4 A λ P Ω 2 - Ω L 2 ,
( Ω L ) n = Ω L J n ( M / f j ) ,

Metrics