Abstract

An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Bowden, H. M. Gibbs, S. M. McCall, eds., Optical Bistability 2 (Plenum, New York, 1984).
    [CrossRef]
  2. P. W. Smith, Y. Silberberg, D. A. B. Miller, J. Opt. Soc. Am. B 2, 1228 (1985).
    [CrossRef]
  3. G. Zeidler, Siemens Forsch. Entwicklungsber. 2, 235 (1973).
  4. H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
    [CrossRef]
  5. H. A. Haus, Fields and Waves in Optical Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 283–287.
  6. D. Haas, J. Wurl, J. Mclean, T. K. Gustafson, Opt. Lett. 9, 445 (1984).
    [CrossRef] [PubMed]
  7. J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
    [CrossRef]

1985

1984

1981

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

1975

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

1973

G. Zeidler, Siemens Forsch. Entwicklungsber. 2, 235 (1973).

Augustyniak, W. M.

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

Gustafson, T. K.

Haas, D.

Haus, H. A.

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

H. A. Haus, Fields and Waves in Optical Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 283–287.

Logan, R. A..

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

Mclean, J.

Mikulyak, R. M.

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

Miller, D. A. B.

Silberberg, Y.

Smith, P. W.

Tsang, W. T.

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

Wurl, J.

Zeidler, G.

G. Zeidler, Siemens Forsch. Entwicklungsber. 2, 235 (1973).

Appl. Phys. Lett.

J. P. van der Ziel, W. T. Tsang, R. A.. Logan, R. M. Mikulyak, W. M. Augustyniak, Appl. Phys. Lett. 39, 525 (1981).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Siemens Forsch. Entwicklungsber.

G. Zeidler, Siemens Forsch. Entwicklungsber. 2, 235 (1973).

Other

H. A. Haus, Fields and Waves in Optical Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 283–287.

C. M. Bowden, H. M. Gibbs, S. M. McCall, eds., Optical Bistability 2 (Plenum, New York, 1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The net gain as a function of pulse energy. The energy is in units of /σg. The parameters are Ng0σg = Na0σa = 1, α0 = 0.1, and σa/σg = 2. The arrow marks the final energy value in the case of a finite-gain bandwidth.

Fig. 2
Fig. 2

Simulations of pulse propagation through a medium with parameters as in Fig. 1. The pulse propagates from left to right, and its shape is shown at intervals of z = 1/Ngσg along the medium. a, Input pulse energy E = 1.4, above the threshold value. b, Input pulse energy E = 0.25, below threshold. The vertical scale is 10× compared with a and c. c, input pulse energy E = 0.35, above but close to threshold.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d N g / d t = - N g σ g I / h ν ,
d N a / d t = - N a σ a I / h ν ,
N i = N i 0 exp ( - σ i - t I d t / h ν ) ,             i = g , a ,
d E / d z = N g 0 [ 1 - exp ( - σ g E ) ] - N a 0 [ 1 - exp ( - σ a E ) ] - α 0 E ,
( 1 / E ) d E / d z = N g 0 σ g - N a 0 σ a - α 0 ,
Δ A / s + A / z = D 2 A / s 2 + ( N g σ g - N a σ a - α 0 ) A / 2 ,
N i = N i 0 exp { - σ i E [ tanh ( s / τ ) + 1 ] / 2 } = N i 0 exp ( - σ i E / 2 ) { 1 - σ i E tanh ( s / τ ) / 2 + 1 / 2 [ σ i E tanh ( s / τ ) / 2 ] 2 } .
D / τ 2 = 1 / 2 [ σ g N g 0 exp ( - σ g E / 2 ) - σ a N a 0 × exp ( - σ a E / 2 ) ] ,
- D / τ 2 = 1 / 8 [ σ g N g 0 exp ( - σ g E / 2 ) ( σ g E / 2 ) 2 - σ a N a 0 exp ( - σ a E / 2 ) ( σ a E / 2 ) 2 ] ,
Δ / τ = 1 / 2 [ σ g N g 0 exp ( - σ g E / 2 ) σ g E / 2 - σ a N a 0 × exp ( - σ a E / 2 ) σ a E / 2 ] .

Metrics