Abstract

Optical bistable oscillation beams with a self-pumped phase-conjugate mirror are reported. The results of an experimental demonstration are given, and an explanation based on the threshold of oscillation is presented.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
    [CrossRef]
  2. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  3. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
    [CrossRef]
  4. J. Feinberg, Opt. Lett. 8, 480 (1983).
    [CrossRef] [PubMed]
  5. The coherent pumping condition is satisfied for the transmission grating since |L − 2Li| < Lc, i = 1, 2, from Eq. (1). A detailed discussion on the coherent conditions in ring self-pumped phase-conjugate mirrors is given by M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
    [CrossRef]
  6. A. Yariv, S.-K. Kwong, K. Kyuma, Appl. Phys. Lett. 48, 1114 (1986).
    [CrossRef]
  7. S.-K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
    [CrossRef]

1986

A. Yariv, S.-K. Kwong, K. Kyuma, Appl. Phys. Lett. 48, 1114 (1986).
[CrossRef]

1985

The coherent pumping condition is satisfied for the transmission grating since |L − 2Li| < Lc, i = 1, 2, from Eq. (1). A detailed discussion on the coherent conditions in ring self-pumped phase-conjugate mirrors is given by M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

1984

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

1983

J. Feinberg, Opt. Lett. 8, 480 (1983).
[CrossRef] [PubMed]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

1982

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Cronin-Golomb, M.

The coherent pumping condition is satisfied for the transmission grating since |L − 2Li| < Lc, i = 1, 2, from Eq. (1). A detailed discussion on the coherent conditions in ring self-pumped phase-conjugate mirrors is given by M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Feinberg, J.

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Kwong, S.-K.

A. Yariv, S.-K. Kwong, K. Kyuma, Appl. Phys. Lett. 48, 1114 (1986).
[CrossRef]

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Kyuma, K.

A. Yariv, S.-K. Kwong, K. Kyuma, Appl. Phys. Lett. 48, 1114 (1986).
[CrossRef]

Paslaski, J.

The coherent pumping condition is satisfied for the transmission grating since |L − 2Li| < Lc, i = 1, 2, from Eq. (1). A detailed discussion on the coherent conditions in ring self-pumped phase-conjugate mirrors is given by M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Yariv, A.

A. Yariv, S.-K. Kwong, K. Kyuma, Appl. Phys. Lett. 48, 1114 (1986).
[CrossRef]

The coherent pumping condition is satisfied for the transmission grating since |L − 2Li| < Lc, i = 1, 2, from Eq. (1). A detailed discussion on the coherent conditions in ring self-pumped phase-conjugate mirrors is given by M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

Appl. Phys. Lett.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, Appl. Phys. Lett. 42, 919 (1983).
[CrossRef]

The coherent pumping condition is satisfied for the transmission grating since |L − 2Li| < Lc, i = 1, 2, from Eq. (1). A detailed discussion on the coherent conditions in ring self-pumped phase-conjugate mirrors is given by M. Cronin-Golomb, J. Paslaski, A. Yariv, Appl. Phys. Lett. 47, 1131 (1985).
[CrossRef]

A. Yariv, S.-K. Kwong, K. Kyuma, Appl. Phys. Lett. 48, 1114 (1986).
[CrossRef]

S.-K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, Appl. Phys. Lett. 40, 450 (1982).
[CrossRef]

IEEE J. Quantum Electron.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement to observe bistable oscillations. M1–M4 are mirrors of reflectivity ≃1. B1–B3 are beam blocks.

Fig. 2
Fig. 2

P1 is the power of the phase-conjugate beam, P2 is the power of the beam circulating counterclockwise in the ring cavity, P3 is the power of oscillation between the crystal and mirror M3, and P4 is the power of oscillation between the crystal and mirror M4. ● and ○ represent Bi inserted and removed, respectively.

Fig. 3
Fig. 3

Theoretical plots of reflectivity R versus ring phase-conjugate mirror reflectivity r for γl = 4.64 and γl = 5.2. For R > 1.24, oscillation can occur.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L - 2 L i < L c ,             i = 1 , 2 , 2 L 1 - L 2 > L c .
R = 1 r | J ( 0 ) e - α l / 2 J ( 0 ) - 1 | 2 1 M T 2 1.24 ,
J ( 0 ) = 0 γ l e - x d x 1 + r - 1 e - α l e 2 α x / γ
( γ l ) eff = ( γ l ) 0 1 + erase beam intensity total beam intensity ( γ l ) 0 1 + P 3 P 0 = 5.2 1 + 1.2 10 = 4.64 ,

Metrics