Abstract

The dependence on the output Stokes radiation CO2-laser pump energy of obtained through stimulated rotational Raman scattering in para hydrogen is studied experimentally. The effective plane-wave gain for this process was determined as a function of the scattered wavelength by using a theoretical expression for the scattered pulse energy. Experimental values for the gain follow an inverse-wavelength law and are in close agreement with theory.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. ByerIEEE J. Quantum Electron. QE-12, 732 (1976).
    [CrossRef]
  2. R. L. Byer, W. R. Trutna, Opt. Lett. 3, 144 (1978); W. R. Trutna, R. L. Byer, Appl. Opt. 19, 301 (1980).
    [CrossRef] [PubMed]
  3. P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
    [CrossRef]
  4. P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
    [CrossRef]
  5. J. L. Carlsten, N. A. Kurnit, “Stimulated Raman scattering and four-wave mixing in CO2-pumped para- H2,” presented at Topical Meeting on Infrared Lasers, Los Angeles, Calif, December 3–5,1980.
  6. M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
    [CrossRef]
  7. K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
    [CrossRef]
  8. J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
    [CrossRef]
  9. D. Herriot, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964).
    [CrossRef]
  10. H. A. Fairbank, Rev. Sci. Instrum. 17, 473 (1946).
    [CrossRef]
  11. R. T. V. Kung, IEEE J. Quantum Electron. QE-17, 509 (1981).
    [CrossRef]
  12. R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 235.

1985

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

1984

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

1983

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

1981

R. T. V. Kung, IEEE J. Quantum Electron. QE-17, 509 (1981).
[CrossRef]

1979

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

1978

1977

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

1976

R. L. ByerIEEE J. Quantum Electron. QE-12, 732 (1976).
[CrossRef]

1964

1946

H. A. Fairbank, Rev. Sci. Instrum. 17, 473 (1946).
[CrossRef]

Aoki, Y.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Bernardini, M.

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

Brickman, R.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Byer, R. L.

Carlsten, J. L.

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

J. L. Carlsten, N. A. Kurnit, “Stimulated Raman scattering and four-wave mixing in CO2-pumped para- H2,” presented at Topical Meeting on Infrared Lasers, Los Angeles, Calif, December 3–5,1980.

Fairbank, H. A.

H. A. Fairbank, Rev. Sci. Instrum. 17, 473 (1946).
[CrossRef]

Ferrario, A.

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

Giorgi, M.

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

Herriot, D.

Kaldor, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Kogelnik, H.

Kompfner, R.

Kung, R. T. V.

R. T. V. Kung, IEEE J. Quantum Electron. QE-17, 509 (1981).
[CrossRef]

Kurnit, N. A.

J. L. Carlsten, N. A. Kurnit, “Stimulated Raman scattering and four-wave mixing in CO2-pumped para- H2,” presented at Topical Meeting on Infrared Lasers, Los Angeles, Calif, December 3–5,1980.

Lankard, J. R.

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

Loy, M. M. T.

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

Marchetti, S.

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

Midorikawa, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Nagasaka, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Namba, S.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Ohashi, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Palucci, A.

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

Pantell, R. H.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 235.

Puthoff, H. E.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 235.

Rabinowitz, P.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Sorokin, P. P.

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

Stein, A.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

Tashiro, H.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Toyoda, K.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Trutna, W. R.

Wenzel, R. G.

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Rabinowitz, A. Stein, R. Brickman, A. Kaldor, Appl. Phys. Lett. 35, 739 (1979).
[CrossRef]

IEEE J. Quantum Electron.

R. L. ByerIEEE J. Quantum Electron. QE-12, 732 (1976).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, IEEE J. Quantum Electron. QE-13, 871 (1977).
[CrossRef]

J. L. Carlsten, R. G. Wenzel, IEEE J. Quantum Electron. QE-19, 1407 (1983).
[CrossRef]

R. T. V. Kung, IEEE J. Quantum Electron. QE-17, 509 (1981).
[CrossRef]

J. Appl. Phys.

K. Midorikawa, H. Tashiro, Y. Aoki, K. Ohashi, K. Nagasaka, K. Toyoda, S. Namba, J. Appl. Phys. 57, 1504 (1985).
[CrossRef]

Nuovo Cimento

M. Bernardini, A. Ferrario, M. Giorgi, S. Marchetti, A. Palucci, Nuovo Cimento 4D, 520 (1984).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

H. A. Fairbank, Rev. Sci. Instrum. 17, 473 (1946).
[CrossRef]

Other

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), p. 235.

J. L. Carlsten, N. A. Kurnit, “Stimulated Raman scattering and four-wave mixing in CO2-pumped para- H2,” presented at Topical Meeting on Infrared Lasers, Los Angeles, Calif, December 3–5,1980.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of experimental setup.

Fig. 2
Fig. 2

Stokes output energy dependence on pump energy of lines 10P(20) and 9P(20). Solid lines are the adjusted theoretical curves.

Fig. 3
Fig. 3

Stokes output energy dependence on pump energy of lines 10R(20) and 9R(20). Solid lines are the adjusted theoretical curves.

Fig. 4
Fig. 4

Typical pulses: (a) pump pulse, (b) depleted pump pulse, (c) Stokes output pulse.

Tables (1)

Tables Icon

Table 1 Measured Plane-Wave Gain at CO2-Laser Lines

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P s ( t ) = R n - 1 P s 0 exp [ g P p 0 ( t ) ] 1 + λ s λ p P s 0 P p 0 ( t ) exp [ g P p 0 ( t ) ] ,
E s = R n - 1 P s 0 exp [ g P p 0 ( t ) ] d t 1 + λ s λ p P s 0 P p 0 ( t ) exp [ g P p 0 ( t ) ] .
α = g ( 1 - R ) ( λ s + λ p ) / 4 ( 1 - R n ) tan - 1 ( d / b ) .

Metrics