Abstract

Room-temperature cw operation of a Ti:Al2O3 laser has been demonstrated for the first reported time. Laser emission at 770 nm was excited with an all-line Ar-ion laser pump. The maximum output power was 1.6 W. Values of (64 ± 10)% for the internal quantum efficiency and (2.4 ± 0.5)% for the round-trip cavity loss are obtained from the thresholds and slope efficiencies measured with 0.7 and 4.9% output couplers. The cavity-loss value places an upper bound of 0.007 cm−1 on the absorption coefficient of the laser rod for the π polarization (E||ĉ) at 770 nm, compared with 0.73 cm−1 measured at 490 nm, the peak of the Ti3+ pump band.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [CrossRef]
  2. P. F. Moulton, Solid State Research Rep. DT1C-AD-A140027/4 (1983:3) (Lincoln Laboratory, Lexington, Mass., 1983), p. 17.
  3. P. Lacovara, L. Esterowitz, M. Kokta, IEEE J. Quantum Electron. QE-21, 1614 (1985).
    [CrossRef]
  4. R. E. Fahey, A. J. Strauss, A. Sanchez, “Growth and characterization of Ti:Al2O3 crystals,” Solid State Research Rep. (1985:4) (Lincoln Laboratory, Lexington, Mass., to be published).
  5. R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. (to be published).
  6. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
    [CrossRef]

1986

1985

P. Lacovara, L. Esterowitz, M. Kokta, IEEE J. Quantum Electron. QE-21, 1614 (1985).
[CrossRef]

1972

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. (to be published).

Dienes, A.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Esterowitz, L.

P. Lacovara, L. Esterowitz, M. Kokta, IEEE J. Quantum Electron. QE-21, 1614 (1985).
[CrossRef]

Fahey, R. E.

R. E. Fahey, A. J. Strauss, A. Sanchez, “Growth and characterization of Ti:Al2O3 crystals,” Solid State Research Rep. (1985:4) (Lincoln Laboratory, Lexington, Mass., to be published).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. (to be published).

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Kokta, M.

P. Lacovara, L. Esterowitz, M. Kokta, IEEE J. Quantum Electron. QE-21, 1614 (1985).
[CrossRef]

Lacovara, P.

P. Lacovara, L. Esterowitz, M. Kokta, IEEE J. Quantum Electron. QE-21, 1614 (1985).
[CrossRef]

Moulton, P. F.

P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
[CrossRef]

P. F. Moulton, Solid State Research Rep. DT1C-AD-A140027/4 (1983:3) (Lincoln Laboratory, Lexington, Mass., 1983), p. 17.

Sanchez, A.

R. E. Fahey, A. J. Strauss, A. Sanchez, “Growth and characterization of Ti:Al2O3 crystals,” Solid State Research Rep. (1985:4) (Lincoln Laboratory, Lexington, Mass., to be published).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. (to be published).

Shank, C. V.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Strauss, A. J.

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. (to be published).

R. E. Fahey, A. J. Strauss, A. Sanchez, “Growth and characterization of Ti:Al2O3 crystals,” Solid State Research Rep. (1985:4) (Lincoln Laboratory, Lexington, Mass., to be published).

IEEE J. Quantum Electron.

P. Lacovara, L. Esterowitz, M. Kokta, IEEE J. Quantum Electron. QE-21, 1614 (1985).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

J. Opt. Soc. Am. B

Other

P. F. Moulton, Solid State Research Rep. DT1C-AD-A140027/4 (1983:3) (Lincoln Laboratory, Lexington, Mass., 1983), p. 17.

R. E. Fahey, A. J. Strauss, A. Sanchez, “Growth and characterization of Ti:Al2O3 crystals,” Solid State Research Rep. (1985:4) (Lincoln Laboratory, Lexington, Mass., to be published).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, “Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectrum in the E||c polarization for the Ti:Al2O3 laser rod at room temperature.

Fig. 2
Fig. 2

Schematic of the experimental setup showing the Ar-ion pump laser and the three-mirror folded cavity for the Ti:Al2O3 laser.

Fig. 3
Fig. 3

Ti:Al2O3 laser output at 770 nm versus incident pump power for two couplers with transmittance T = 0.7% and T = 4.9%.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η Q = η λ L A λ p ,
η Q = η Q i T L + T .
P th = C ( L + T ) ,

Metrics