Abstract

The occurrence of higher-order Fourier components in an originally sinusoidal free-carrier index grating produced in CdS by interference of two picosecond light pulses is demonstrated by simultaneously monitoring the decay of the first- and second-order diffraction intensity of a transparent probe pulse. A pronounced contribution with doubled period can be attributed to an exciton phase grating formed by binding of electrons and holes of the free-carrier grating.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, in Festkörperprobleme—Advances in Solid State Physics, J. Treusch, ed. (Vieweg, Braunschweig, 1978), Vol. XVIII, p. 241.
    [CrossRef]
  2. A. L. Smirl, in Semiconductors Probed by Ultrafast Laser Spectroscopy, R. R. Alfano, ed. (Academic, Orlando, Fla., 1984), Vol. 1, p. 197.
  3. H. Kalt, V. G. Lyssenko, R. Renner, C. Klingshirn, J. Opt. Soc. Am. B 2, 1188 (1985), and references therein.
    [CrossRef]
  4. W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
    [CrossRef]
  5. R. S. Knox, in Theory of Excitons, F. Seitz, D. Turnbull, eds., Vol. 5 of Solid State Physics—Advances in Research and Applications (Academic, New York, 1963), p. 103.
  6. H. Saito, E. O. Göbel, Phys. Rev. B 31, 2360 (1981); H. Saito, J. Lumin. 30, 303 (1985).
    [CrossRef]
  7. For a review on high-density phenomena in CdS see C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981).
    [CrossRef]

1985

1981

H. Saito, E. O. Göbel, Phys. Rev. B 31, 2360 (1981); H. Saito, J. Lumin. 30, 303 (1985).
[CrossRef]

For a review on high-density phenomena in CdS see C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981).
[CrossRef]

1967

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

Cook, B. D.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

Eichler, H. J.

H. J. Eichler, in Festkörperprobleme—Advances in Solid State Physics, J. Treusch, ed. (Vieweg, Braunschweig, 1978), Vol. XVIII, p. 241.
[CrossRef]

Göbel, E. O.

H. Saito, E. O. Göbel, Phys. Rev. B 31, 2360 (1981); H. Saito, J. Lumin. 30, 303 (1985).
[CrossRef]

Haug, H.

For a review on high-density phenomena in CdS see C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981).
[CrossRef]

Kalt, H.

Klein, W. R.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

Klingshirn, C.

H. Kalt, V. G. Lyssenko, R. Renner, C. Klingshirn, J. Opt. Soc. Am. B 2, 1188 (1985), and references therein.
[CrossRef]

For a review on high-density phenomena in CdS see C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981).
[CrossRef]

Knox, R. S.

R. S. Knox, in Theory of Excitons, F. Seitz, D. Turnbull, eds., Vol. 5 of Solid State Physics—Advances in Research and Applications (Academic, New York, 1963), p. 103.

Lyssenko, V. G.

Renner, R.

Saito, H.

H. Saito, E. O. Göbel, Phys. Rev. B 31, 2360 (1981); H. Saito, J. Lumin. 30, 303 (1985).
[CrossRef]

Smirl, A. L.

A. L. Smirl, in Semiconductors Probed by Ultrafast Laser Spectroscopy, R. R. Alfano, ed. (Academic, Orlando, Fla., 1984), Vol. 1, p. 197.

IEEE Trans. Sonics Ultrason.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 123 (1967).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rep.

For a review on high-density phenomena in CdS see C. Klingshirn, H. Haug, Phys. Rep. 70, 315 (1981).
[CrossRef]

Phys. Rev. B

H. Saito, E. O. Göbel, Phys. Rev. B 31, 2360 (1981); H. Saito, J. Lumin. 30, 303 (1985).
[CrossRef]

Other

H. J. Eichler, in Festkörperprobleme—Advances in Solid State Physics, J. Treusch, ed. (Vieweg, Braunschweig, 1978), Vol. XVIII, p. 241.
[CrossRef]

A. L. Smirl, in Semiconductors Probed by Ultrafast Laser Spectroscopy, R. R. Alfano, ed. (Academic, Orlando, Fla., 1984), Vol. 1, p. 197.

R. S. Knox, in Theory of Excitons, F. Seitz, D. Turnbull, eds., Vol. 5 of Solid State Physics—Advances in Research and Applications (Academic, New York, 1963), p. 103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Light intensity of the first- (filled circles) and second-order (open circles) diffracted beams versus time delay between the excitation (λ = 355 nm) and probe (λ = 533 nm) pulses at a bath temperature of T = 10 K for three grating spacings Λ and an excitation pulse energy of 0.25 μJ.

Fig. 2
Fig. 2

Light intensity of the first- (filled circles) and second-order (open circles) diffracted beam versus time delay at a bath temperature of T = 170 K for a grating spacing of Λ = 2.9 μm and an excitation pulse energy of 0.5 μJ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ j = 2 π d λ ( Δ n ) j ,
φ n z + 1 2 d j = 1 Φ j [ φ n - j exp ( i σ j ) - φ n + j exp ( - i σ j ) ] = 0 ,
I dif ( n ) Φ 1 2 n ( Δ n ) 2 n .
Δ N N 0 exp [ - ( 4 π 2 D Λ 2 + 1 τ ) t ] = N 0 exp ( - Γ t ) ,
I dif ( n ) ( Λ , t ) exp ( - 2 n Γ t ) = exp ( - 2 Γ ¯ t ) .

Metrics