Abstract

An optical three-pulse stimulated echo signal is analyzed theoretically and numerically for three pulses of arbitrary shape in a medium having hyperfine structures in the ground and excited states. The feasibility of its use as an optical fast-memory device is emphasized. Numerical analysis shows that the fidelity of the memory is reasonably good as long as the storage time T is short compared with the excited-state lifetime T1. However, the echo suffers severe modulation because of the hyperfine structures when T exceeds T1.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
    [CrossRef] [PubMed]
  2. T. W. Mossberg, Opt. Lett. 7, 77 (1982); N. W. Carlson, Y. S. Bai, W. R. Babbit, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984); N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbit, T. W. Mossberg, Opt. Lett. 8, 483 (1983).
    [CrossRef] [PubMed]
  3. V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Theor. Fiz. 32, 293 (1980) [JETP Lett. 32, 270 (1980)].
  4. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), p. 393.
  5. Y. C. Chen, K. Chiang, S. R. Hartmann, Phys. Rev. B 21, 40 (1980); Opt. Commun. 29, 181 (1979).
    [CrossRef]
  6. M. Mitsunaga, E. S. Kintzer, R. G. Brewer, Phys. Rev. B 31, 6947 (1985); N. C. Wong, E. S. Kintzer, J. Mlynek, R. G. DeVoe, R. G. Brewer, Phys. Rev. B 28, 4993 (1983).
    [CrossRef]
  7. R. M. Macfarlane, R.M. Shelby, R. L. Shoemaker, Phys. Rev. Lett. 43, 1726 (1979).
    [CrossRef]
  8. N. W. Carlson, W. R. Babbit, T. W. Mossberg, Opt. Lett. 8, 623 (1983).
    [CrossRef] [PubMed]

1985 (2)

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[CrossRef] [PubMed]

M. Mitsunaga, E. S. Kintzer, R. G. Brewer, Phys. Rev. B 31, 6947 (1985); N. C. Wong, E. S. Kintzer, J. Mlynek, R. G. DeVoe, R. G. Brewer, Phys. Rev. B 28, 4993 (1983).
[CrossRef]

1983 (1)

1982 (1)

1980 (2)

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Theor. Fiz. 32, 293 (1980) [JETP Lett. 32, 270 (1980)].

Y. C. Chen, K. Chiang, S. R. Hartmann, Phys. Rev. B 21, 40 (1980); Opt. Commun. 29, 181 (1979).
[CrossRef]

1979 (1)

R. M. Macfarlane, R.M. Shelby, R. L. Shoemaker, Phys. Rev. Lett. 43, 1726 (1979).
[CrossRef]

Babbit, W. R.

Brewer, R. G.

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[CrossRef] [PubMed]

M. Mitsunaga, E. S. Kintzer, R. G. Brewer, Phys. Rev. B 31, 6947 (1985); N. C. Wong, E. S. Kintzer, J. Mlynek, R. G. DeVoe, R. G. Brewer, Phys. Rev. B 28, 4993 (1983).
[CrossRef]

Carlson, N. W.

Chen, Y. C.

Y. C. Chen, K. Chiang, S. R. Hartmann, Phys. Rev. B 21, 40 (1980); Opt. Commun. 29, 181 (1979).
[CrossRef]

Chiang, K.

Y. C. Chen, K. Chiang, S. R. Hartmann, Phys. Rev. B 21, 40 (1980); Opt. Commun. 29, 181 (1979).
[CrossRef]

Hartmann, S. R.

Y. C. Chen, K. Chiang, S. R. Hartmann, Phys. Rev. B 21, 40 (1980); Opt. Commun. 29, 181 (1979).
[CrossRef]

Kintzer, E. S.

M. Mitsunaga, E. S. Kintzer, R. G. Brewer, Phys. Rev. B 31, 6947 (1985); N. C. Wong, E. S. Kintzer, J. Mlynek, R. G. DeVoe, R. G. Brewer, Phys. Rev. B 28, 4993 (1983).
[CrossRef]

Macfarlane, R. M.

R. M. Macfarlane, R.M. Shelby, R. L. Shoemaker, Phys. Rev. Lett. 43, 1726 (1979).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[CrossRef] [PubMed]

M. Mitsunaga, E. S. Kintzer, R. G. Brewer, Phys. Rev. B 31, 6947 (1985); N. C. Wong, E. S. Kintzer, J. Mlynek, R. G. DeVoe, R. G. Brewer, Phys. Rev. B 28, 4993 (1983).
[CrossRef]

Mossberg, T. W.

Samartsev, V. V.

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Theor. Fiz. 32, 293 (1980) [JETP Lett. 32, 270 (1980)].

Shelby, R.M.

R. M. Macfarlane, R.M. Shelby, R. L. Shoemaker, Phys. Rev. Lett. 43, 1726 (1979).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), p. 393.

Shoemaker, R. L.

R. M. Macfarlane, R.M. Shelby, R. L. Shoemaker, Phys. Rev. Lett. 43, 1726 (1979).
[CrossRef]

Usmanov, R. G.

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Theor. Fiz. 32, 293 (1980) [JETP Lett. 32, 270 (1980)].

Zuikov, V. A.

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Theor. Fiz. 32, 293 (1980) [JETP Lett. 32, 270 (1980)].

Opt. Lett. (2)

Phys. Rev. A (1)

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[CrossRef] [PubMed]

Phys. Rev. B (2)

Y. C. Chen, K. Chiang, S. R. Hartmann, Phys. Rev. B 21, 40 (1980); Opt. Commun. 29, 181 (1979).
[CrossRef]

M. Mitsunaga, E. S. Kintzer, R. G. Brewer, Phys. Rev. B 31, 6947 (1985); N. C. Wong, E. S. Kintzer, J. Mlynek, R. G. DeVoe, R. G. Brewer, Phys. Rev. B 28, 4993 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

R. M. Macfarlane, R.M. Shelby, R. L. Shoemaker, Phys. Rev. Lett. 43, 1726 (1979).
[CrossRef]

Pis’ma Zh. Eksp. Theor. Fiz. (1)

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Theor. Fiz. 32, 293 (1980) [JETP Lett. 32, 270 (1980)].

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), p. 393.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pulse sequence and expected signal in optical stimulated echo experiment.

Fig. 2
Fig. 2

Energy diagram of hyperfine-split two-level system.

Fig. 3
Fig. 3

Numerical analysis of Eq. (9) showing the stimulated echo envelope modulation for a square-wave DATA pulse. Starting with the top trace, D = 1, 0.75, 0.5, 0.25, 0. The magnification factors are 1, 1.32, 1.93, 2.93, and 5.59, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H 0 = ( H e 0 0 H g ) .
( H e ) k k = ( Ω + ω k e ) ,             ( H g ) l l = ω l ,
H int = - 2 E j ( t ) cos ω L t ( 0 P P + 0 )             ( j = 1 , 2 , 3 )
ρ ˙ = i [ ρ , ( 0 v v + 0 ) ] + ( decay term ) ,
v k l ( t ) = - E ( t ) p k l exp [ i ( Δ + ω k e - ω e ) t ] ,
ρ k k ( n ) ( t ) = i l t [ ρ k l ( n - 1 ) ( t ) v k l * ( t ) - ν k l ( t ) ρ l k ( n - 1 ) ( t ) ] d t ,
ρ l l ( n ) ( t ) = i k t [ ρ l k ( n - 1 ) ( t ) v k l ( t ) - ν k l * ( t ) ρ k l ( n - 1 ) ( t ) ] d t ,
ρ k l ( n ) ( t ) = i t exp [ - ( t - t ) / T 2 ] [ k ρ k k ( n - 1 ) ( t ) × ν k l ( t ) - l ν k l ( t ) ρ l l ( n - 1 ) ( t ) ] d t .
ρ k k ( T ) = ρ k k ( 0 ) exp ( - γ T ) ,
ρ l l ( T ) = ρ l l ( 0 ) + [ 1 - exp ( - γ T ) ] k ( γ k l / γ ) ρ k k ( 0 ) .
S ( t ) = - i 3 k l k l d t 3 d t 2 d t 1 exp [ - ( t - t 3 + t 2 - t 1 ) / T 2 - i ω L t - σ 2 ( t - t 3 - t 2 + t 1 ) 2 / 4 ] E 1 * ( t 1 ) E 2 ( t 2 ) E 3 ( t 3 ) × exp [ - i ( ω k e - ω l ) ( t - t 3 ) + i ( ω k e - ω l ) ( t 2 - t 1 ) ] × p k l 2 p k l 2 [ e - γ T ρ l l 0 δ k k + ρ l l 0 δ l l - ( 1 - e - γ T ) × ( γ k l / γ ) ρ l l 0 ] + c . c .
S ( t ) = - 2 i π E 1 τ 1 E 3 τ 3 3 σ exp ( - i ω L t ) 2 ( t - T ) × exp [ - 2 ( t - T ) / T 2 ] × { k l k l ( ρ l l 0 e - γ T δ k k + ρ l l 0 δ l l - 1 - e - γ T γ γ k l ρ l l 0 ) × p k l 2 p k l 2 exp [ i ( ω k k e - ω l l ) ( t - T ) ] } + c . c .

Metrics