Abstract

The output of an unlocked optically injected semiconductor laser exhibits a two-sided spectral distribution about its lasing frequency. The experimental results are explained by coupled phase and amplitude modulation and described by a rate-equation analysis.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kurokowa, IEEE Trans. Microwave Theory Tech. MTT-16, 234 (1968).
    [Crossref]
  2. S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-16, 915 (1980).
    [Crossref]
  3. R. Adler, Proc. IRE Waves Electrons 34, 351 (1946).
  4. R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
    [Crossref]
  5. P. Gallion, G. Debarge, Electron. Lett. 21, 264 (1985).
    [Crossref]
  6. P. Gallion, G. Debarge, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985).
  7. F. Mogensen, H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-21, 784 (1985).
    [Crossref]
  8. C. H. Henry, N. A. Olson, N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
    [Crossref]
  9. H. L. Stover, Proc. IEEE 54, 310 (1966).
    [Crossref]
  10. H. Nakajima, D. D. I. Thesis (Ecole Nationale Supérieure des Télécommunications, Paris, 1985); H. Nakajima, R. Frey, Appl. Phys. Lett. 47, 769 (1985).
    [Crossref]
  11. C. H. Henry, IEEE J. Quantum Electron. QE-19, 1391 (1983).
    [Crossref]
  12. K. Furaya, Y. Sucmotsu, T. Hong, Appl. Opt. 17, 1949 (1978).
    [Crossref]
  13. R. S. Tucker, J. Lightwave Technol. LT-2, 1180 (1985).
    [Crossref]
  14. K. Vahala, Ch. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).
    [Crossref]

1985 (4)

P. Gallion, G. Debarge, Electron. Lett. 21, 264 (1985).
[Crossref]

F. Mogensen, H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-21, 784 (1985).
[Crossref]

C. H. Henry, N. A. Olson, N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[Crossref]

R. S. Tucker, J. Lightwave Technol. LT-2, 1180 (1985).
[Crossref]

1983 (2)

K. Vahala, Ch. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).
[Crossref]

C. H. Henry, IEEE J. Quantum Electron. QE-19, 1391 (1983).
[Crossref]

1982 (1)

R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
[Crossref]

1980 (1)

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-16, 915 (1980).
[Crossref]

1978 (1)

1968 (1)

K. Kurokowa, IEEE Trans. Microwave Theory Tech. MTT-16, 234 (1968).
[Crossref]

1966 (1)

H. L. Stover, Proc. IEEE 54, 310 (1966).
[Crossref]

1946 (1)

R. Adler, Proc. IRE Waves Electrons 34, 351 (1946).

Adler, R.

R. Adler, Proc. IRE Waves Electrons 34, 351 (1946).

Debarge, G.

P. Gallion, G. Debarge, Electron. Lett. 21, 264 (1985).
[Crossref]

P. Gallion, G. Debarge, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985).

Dutta, N. K.

C. H. Henry, N. A. Olson, N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[Crossref]

Furaya, K.

Gallion, P.

P. Gallion, G. Debarge, Electron. Lett. 21, 264 (1985).
[Crossref]

P. Gallion, G. Debarge, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985).

Harder, Ch.

K. Vahala, Ch. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).
[Crossref]

Henry, C. H.

C. H. Henry, N. A. Olson, N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[Crossref]

C. H. Henry, IEEE J. Quantum Electron. QE-19, 1391 (1983).
[Crossref]

Hong, T.

Jacobsen, G.

F. Mogensen, H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-21, 784 (1985).
[Crossref]

Kimura, T.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-16, 915 (1980).
[Crossref]

Kobayashi, S.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-16, 915 (1980).
[Crossref]

Kurokowa, K.

K. Kurokowa, IEEE Trans. Microwave Theory Tech. MTT-16, 234 (1968).
[Crossref]

Lang, R.

R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
[Crossref]

Mogensen, F.

F. Mogensen, H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-21, 784 (1985).
[Crossref]

Nakajima, H.

H. Nakajima, D. D. I. Thesis (Ecole Nationale Supérieure des Télécommunications, Paris, 1985); H. Nakajima, R. Frey, Appl. Phys. Lett. 47, 769 (1985).
[Crossref]

Olesen, H.

F. Mogensen, H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-21, 784 (1985).
[Crossref]

Olson, N. A.

C. H. Henry, N. A. Olson, N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[Crossref]

Stover, H. L.

H. L. Stover, Proc. IEEE 54, 310 (1966).
[Crossref]

Sucmotsu, Y.

Tucker, R. S.

R. S. Tucker, J. Lightwave Technol. LT-2, 1180 (1985).
[Crossref]

Vahala, K.

K. Vahala, Ch. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).
[Crossref]

Yariv, A.

K. Vahala, Ch. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Vahala, Ch. Harder, A. Yariv, Appl. Phys. Lett. 42, 211 (1983).
[Crossref]

Electron. Lett. (1)

P. Gallion, G. Debarge, Electron. Lett. 21, 264 (1985).
[Crossref]

IEEE J. Quantum Electron. (5)

C. H. Henry, IEEE J. Quantum Electron. QE-19, 1391 (1983).
[Crossref]

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-16, 915 (1980).
[Crossref]

R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
[Crossref]

F. Mogensen, H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. QE-21, 784 (1985).
[Crossref]

C. H. Henry, N. A. Olson, N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

K. Kurokowa, IEEE Trans. Microwave Theory Tech. MTT-16, 234 (1968).
[Crossref]

J. Lightwave Technol. (1)

R. S. Tucker, J. Lightwave Technol. LT-2, 1180 (1985).
[Crossref]

Proc. IEEE (1)

H. L. Stover, Proc. IEEE 54, 310 (1966).
[Crossref]

Proc. IRE Waves Electrons (1)

R. Adler, Proc. IRE Waves Electrons 34, 351 (1946).

Other (2)

H. Nakajima, D. D. I. Thesis (Ecole Nationale Supérieure des Télécommunications, Paris, 1985); H. Nakajima, R. Frey, Appl. Phys. Lett. 47, 769 (1985).
[Crossref]

P. Gallion, G. Debarge, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Measured and calculated normalized power p (in decibels) in the two first-order sidebands versus the frequency departure (in gigahertz) of the injection field from the carrier. The injection level is Pi = 0.07 μW, and the power output level is o = 3.4 mW (● and a), 6.6 mW (× and b), and 8.7 mW (○ and c).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ˙ = ( G - 1 τ p ) P + f p ( t ) ,
ϕ ˙ = α 2 ( G - 1 τ p ) + f ϕ ( t ) ,
N = I e - G P - N τ e .
f p ( t ) = 2 P ¯ ρ cos Ω t ,             f ϕ ( t ) = ρ sin Ω t .
R ( x ) = ρ x ω R 0 × { [ ( 1 - x 2 ) 2 + 4 sin 2 δ x 2 - 2 α sin δ x ] 2 + α 2 ( 1 - x 2 ) 2 } 1 / 2 [ ( 1 - x 2 ) + 4 sin 2 δ x 2 ] ,
sin δ = ( ω R 0 τ R ) - 1
ω R 0 = ( Γ A P ¯ τ p ) 1 / 2
τ R = 2 ( Γ A P ¯ + 1 τ e ) - 1
p ( ω 0 ± Ω ) = P o P i J 1 2 ( R ) .
ρ 2 = τ p ( 1 - R ) [ log ( 1 R ) ] - 1 ( c 2 L n g ) 3 ( P o P i ) - 1 ,

Metrics